

Dynamic Model of a Continuous Hydrogen Production Plant Based on CeO₂ Thermochemical Cycle

Alicia Bayon and Alberto de la Calle CSIRO Energy, P.O. Box 330, Newcastle, NSW 2300, Australia

Introduction

ASTRI (Australian Solar Thermal Research Initiative)

Main goal: to deliver cost reductions and dispatchability improvements to CSP in Australia and to position Australia in CSP

Cost reduction base in 4 Nodes:

- Heliostat Field and Receivers
- 2. Thermal Storage
- 3. Power Block
- 4. Adding Value

More than 120 researchers

Partners: Australian universities & institutes and international institutions

Funding partner

Australian partners

US collaborators

Europe collaborator

Overview Thermochemical Cycles

Features:

- ✓ Temperature ranges between 1300 and 1800 K
- ✓ Non stoichiometric thermal reduction
- ✓ Solar for sensible heat of solids and gases
- Heat recovery requirements from solids species

Drawbacks:

- HT → Heat losses (re-radiation and conduction)
- Materials requirement (building reactors)
- Thermal-shock resistance
- Efficient heat recovery from solids
- Reactor design

thermal reduction at T_{TR} , p_{O2} $CeO_{2-\delta_{ws}}$ $H_2 \text{ production at } T_{WS} (Q_{MOX})$ $H_{2O} + H_2$ \tilde{h}_{H2} \tilde{h}_{H2O}

Bader et al. 2013

Ermanoski et al. 2014

Bulfin et al. 2015

Bader et al. 2016. Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Solar Fuel Production. Energy & Fuels, 27, 9, 5533-5544

Ermanoski et al. 2014. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting. PCCP 16, 18, 8418-8427

Bulfin et al. 2015. Thermodynamics of CeO_2 Thermochemical Fuel Production. 29, 2 1001-1009

Schieber et al. 2017. H_2O splitting via a two-step solar thermoelectrolytic cycle based on non-stoichiometric ceria redox reactions: Thermodynamic analysis. IJHE, 42, 30, 18785-18793

Schieber et al. 2017

Bader et al. 2

Considerations:

Steady State Operation

Effect of ΔT Effect of O_2 and H_2 separation

Radiation, conduction and convection

losses

System efficiency

Ifin et al. 2015

 T_0, p_0

Bader et al. 2016. Thermodynamic Analysis of Isothermal Redox Cycling of Ceria for Euels, 27, 9, 5533-5544

Not included:

Optics, solar field configuration
Site and location of the plant
Dynamics (DNI variation)
Controls

tion in solar-thermochemical fuel al water splitting. PCCP 16, 18, 8418-

ermochemical Fuel Production. 29, 2

solar thermoelectrolytic cycle based nermodynamic analysis. IJHE, 42, 30,

Schieber et al. 2017

6

System Description: what is new?

Modelling Methodology

de la Calle & Bayon 2017 – Annual Performance of a Thermochemical Hydrogen Production Plant Based on CeO₂ Redox Cycle. 12th International Modelica Conference, Prague, Czech Republic.

https://www.modelica.org/events/modelica2017/proceedings/html/submissions/ecp17132857 DelacalleBayon.pdf

Modelica Language:

- Object oriented
- Flexible & adaptable
- Simulate physical systems
- Transient simulations & controls

Modelling Methodology

de la Calle & Bayon 2017 – Annual Performance of a Thermochemical Hydrogen Production Plant Based on CeO₂ Redox Cycle. 12th International Modelica Conference, Prague, Czech Republic.

https://www.modelica.org/events/modelica2017/proceedings/html/submissions/ecp17132857 DelacalleBayon.pdf

Results and discussion: DNI Geralton, WA

DNI varies all over the year

Days without or partial irradiance \rightarrow control strategy

Results and discussion: hydrogen production

Results and discussion: seasonal control

Results and discussion: annual efficiency

Conclusions & Future work

- \bullet System dynamics of a 1 MW_{th} plant are described and implemented in Modelica
- Continuous H₂ production was obtained by a seasonal control strategy over the CeO₂ particles
- Efficiency of 20% was obtained
- Further models of N₂ purification, vaccum and steam production are required to calculate the efficiency considering these parasitic losses
- Looking for collaboration in dynamic modelling and model validation with experimental demonstration

Funding partner

Australian Government

Australian Renewable Energy Agency

Thank you

Alicia Bayon

ASTRI Postdoctoral Fellow

+61 249606068

alicia.bayonsandoval@csiro.au

www.astri.org.au

US collaborators

