Scalable HeliOstat calibRation sysTem (SHORT)

How to calibrate your whole heliostat field in a single night

April, 2018

Marcelino Sanchez and Cristobal Villasante

Table of contents

- 1 Introduction & context
- 2 SHORT Approach
- 3 Experimental Results
- 4 Conclusions

1. Introduction and context

CSP technology trend

Data from the CSP Today Global Tracker shows that solar towers account for nearly half of total capacity under construction and 70% of projects under development.

Solar towers vs. parabolic trough

Solar heliostat fields trend

Gemasolar (2011)	
Heliostats:	2,650 @ 120 m ²
Aperture:	304,750 m ²
Power:	20 MW
Storage:	15 h

KNIKER

Crescent Dunes (2015)	
Heliostats:	10,347 @ 115.7 m2
Aperture:	1,197,148 m2
Power:	110 MW
Storage:	10 h

Sept 2017. DEWA awards AED14.2 billion largest CSP project in the world with a record bid of USD 7.3 cents per kW/h to generate 700MW. The project will have the world's tallest solar tower, measuring 260 metres.

Heliostats designs trend

- Large number of heliostats
 - ✓ Bigger plants
 - ✓ Smaller heliostats
- Pressure to reduce costs
 - ✓ Relax requirements
 - ✓ Reduce the need of long term stability
 - ✓ Simplify installation
- Need for
 - ✓ Quick heliostat installation
 - Methodologies to guarantee final accuracy on field
 - ✓ and applicable also for large distances between heliostat and tower

Current State

Combination of (one-time) manual adjustment with flux verification

During construction:

- Make sure heliostat axis are properly aligned
- ✓ Measure inclinations
- ✓ Adjust orientations (screws)

Drawbacks:

- ✓ Very difficult to repeat later on
- ✓ Labor intensive
- ✓ Difficulties to guarantee final accuracy

Current State

During operation:

- ✓ Reflect sun onto target
- ✓ Use camera to detect flux center
- ✓ Measure deviations
- Calculate angular offset and introduce as offset correction

Drawbacks:

- \checkmark One heliostat at a time
- ✓ Takes a very long time for large fields
- ✓ Not fully applicable to long distance heliostats where:
- ✓ Reflected image has very low power density
- $\checkmark\,$ Size of reflected image could be bigger than the white target
- Impossible to accurately determine actual aiming point
- ✓ Final accuracy of this methodology depends on heliostat features such us (facet quality, heliostat size and position)

TARGET

Berenguel et al. 2004

Goals:

- New calibration methodology to identify heliostat actual configuration
 - ✓ Axes orientations (elevation & azimuth)

NIKFR

- ✓ Angular offsets (elevation & azimuth)
- Automatic
- Accurate
- Fast
- □ Highly parallel

1. Attach a camera to each heliostat

- □ Rigid connection to facet structure
 - No specific position or viewing direction required
 - Possibly looking sideways or backwards
- □ Low-cost camera (mobile devices)

NIKFR

2. Define targets (anything identifiable) with known locations and covering tracking range

- ✓ Artificial lights
- ✓ Natural lights: sun, moon
- \checkmark Objects in the field

Moon

2. SHORT Approach (artificial vision system)

3. Observation of targets in images

- □ Storage known positions of each target (x_t, y_t, z_t)
- Heliostat moves to find each target
- □ For each target and position of the heliostat
 - ✓ Automatically detect target in image
 - ✓ Store target ID $\begin{pmatrix} u_{it} \\ v_{it} \end{pmatrix}$
 - ✓ Store encoder values, azimuth, elevation (α_i, β_i)
- Repeat for several targets and heliostat orientations

4. Model the kinematic behaviour of the heliostat

□ Iterative process

Model predicts the image position of a target

$$\binom{u_{it}}{v_{it}} = f(\alpha_i, \beta_i; x_t, y_t, z_t; Model_{gen})$$

□ The Kinematic model "evolves" from a generic heliostat model to the actual model of the heliostat under calibration, including accurate real values of heliostat parameters such us axes position

 $Axes(position) = Model_{act}(\alpha, \beta)$

2. SHORT Approach (Calibration system)

NIKFR

3. Experimental Results

3. Experimental Results

- □ Tested at PSA in October 2016
- □ 7 IR targets throughout the solar field
- □ 53 observations for calibration (additional for evaluations)

KNIKER

Multiple observations of the same target under different orientations

3. Experimental Results (Calibration)

$\binom{u_{it}}{v_{it}} = f(\alpha_i, \beta_i; x_t, y_t, z_t, Model)$

Intermediate kinematic model Finalikkineenaakiomoodeel (heliostat parameters iterative adjustment) (Actual heliostat parameters) Calibrated model

Red: Correct position Green: Model estimation

- Precise knowledge how the heliostat is moving
- RMS error of 0.22 mrad in movement prediction

ADItech

3. Experimental Results (Tracking)

Once the actual kinematic model of the heliostat is calculated by SHORT, Heliostat can be moved into desired orientation

Results on a real heliostat tested at PSA (heliostat tracking evaluation all day long)

- ✓ Evaluation of tracking accuracy (sun tracking)
- ✓ 0.6 mrad tracking error (RMS) for the tested heliostat

3. Experimental Results (N. Custom hardware development

- Functionality: Calibration and (optionally) motion control of heliostat
- Highly flexible software architecture
- □ Traceability of operations supported by a database
- □ Specs:
 - □ A7 processor for running high level algorithms on Linux
 - □ M4 processor for real time motion control
 - Integrated calibration camera and IR filter
 - □ Integrated motor drivers (azimuth & elevation actuators)
 - Communication buses (RS485, ETH) for plant management and integration with large heliostats

4. Conclusions

4. Conclusions

Scalable HeliOstat calibRation sysTem (SHORT) has been presented:

- □ SHORT is based on an **automatic parallel calibration** using a **camera attached** to each heliostat
- SHORT has been validated on field making test at PSA facilities
- SHORT calibrates not only heliostat axes orientation but the actual kinematic model of each heliostat
- □ The accuracy of SHORT is independent of heliostat features and position on field
- Experimental results show SHORT errors below 0.3 mrad (rms)
- Calibrate a heliostat takes less than an hour (heliostat field calibration takes few hours)
- □ SHORT can be applied at night avoiding any interference with ordinary plant operation
- SHORT is fast, easy, robust and accurate and can be applied to any heliostat field

4. Conclusions

Acknowledgements

E U R O P E A N COMMISSION This work has been partially supported by the "Scientific and technological Alliance for guaranteeing the European excellence in Concentrating Solar Thermal Energy (STAGE-STE)", funded by European ´s Union, 7th Framework programme

www.cener.com

Thank you for your attention!!

Marcelino Sánchez

Javier García-Barberena

Cristóbal Villasante

Solar Thermal Energy Department Director CENER msanchez@cener.com Strategy and Business Development Manager CENER jgbarberena@cener.com Renewable Energy Area Coordinator IK4-TEKNIKER cristobal.villasante@tekniker.es

