
COMBINING CONCENTRATING SOLAR POWER WITH MULTIPLE EFFECT DISTILLATION AT INLAND LOCATIONS

- An economically viable option for Northern Chile?

Raymond Branke¹, Thomas Fluri¹, Patricio Valdivia Lefort²

 ¹ Fraunhofer Institute for Solar Energy Systems ISE
²Universidad Técnica Federico Santa Maria / Fraunhofer CSET

SolarPACES 2017 conference

Santiago de Chile, Sep. 26, 2017

OUTLINE

- Motivation
- Concept and methodology
- **Results**
- **Conclusions and Outlook**

2

Motivation

Previous assumption: CSP+MED plants need to be located at coast

- \succ solar resource not favorable
- high projected cost for power and water
- problem of land availability

20

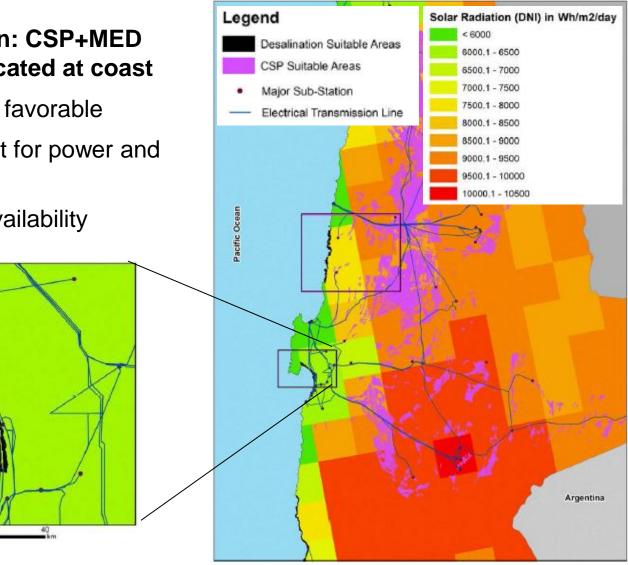


image: [Fluri et al. 2011]

Pacific Ocean

Motivation: Chilean Conditions

<600 1000 1400 1800 2200 2600 3000 3400 3800 kWh/m²

Very high DNI inlands

Image: KGHM

Several existing long distance seawater / desal water pipelines supplying Chilean mines

e.g. 145km seawater pipeline supplying Esperanza copper mine (Sierra Gorda)

Concept: Piping concept to selected CSP+MED plant locations along a path

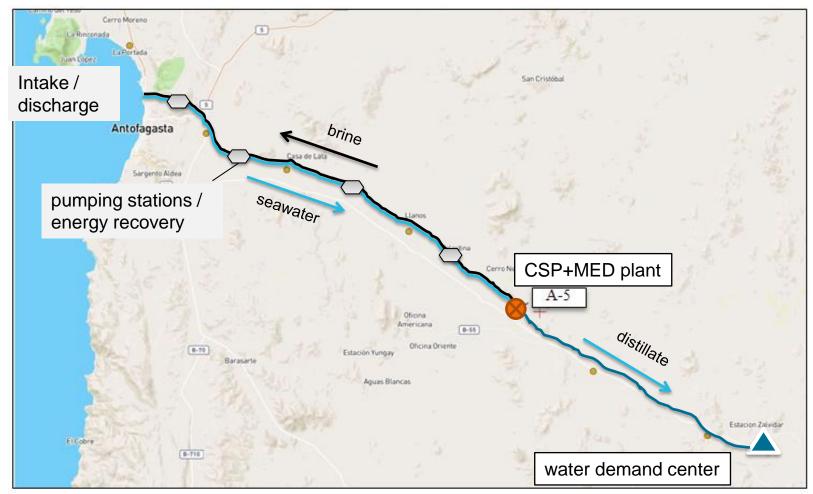


image: [openstreetmap 2017]

Selected locations on Path Antofagasta

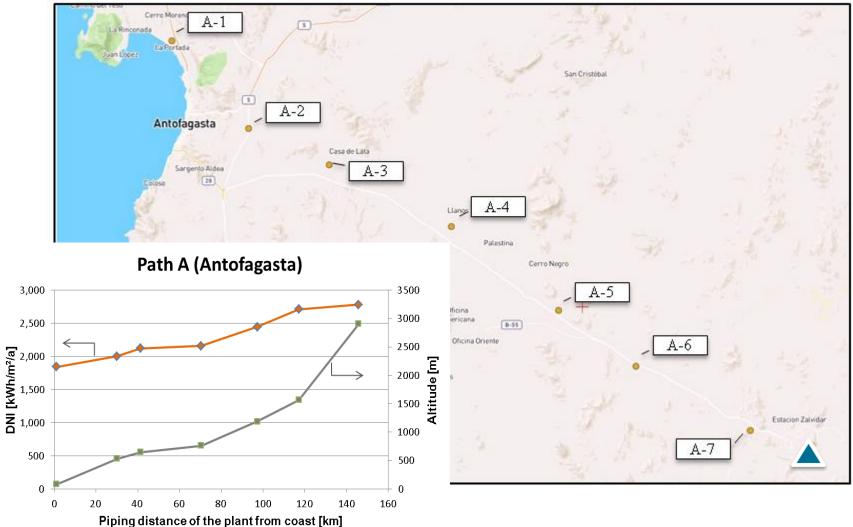
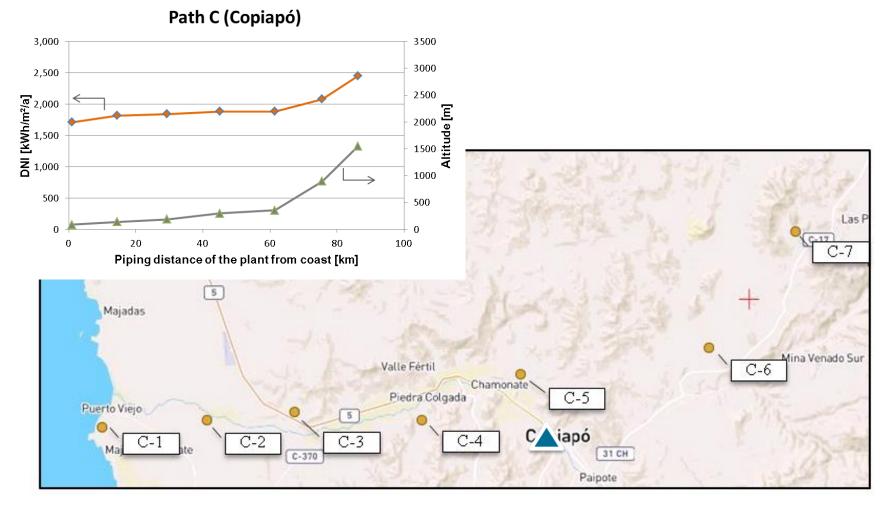



image: [openstreetmap 2017]

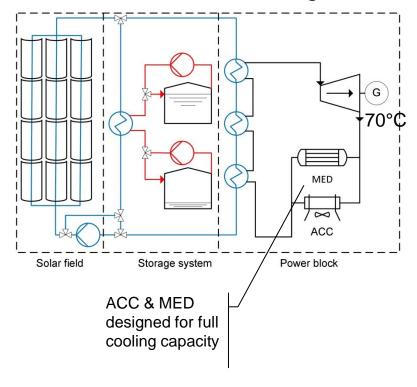
Selected locations on Path Copiapó

image: [openstreetmap 2017]

CSP+MED plant specs

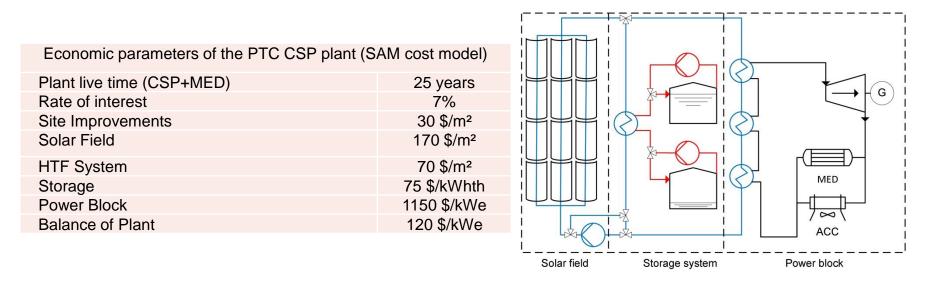
Basic parameters of the CSP plant design.

Turbine Capacity (Net)	50.0 MW _{el}
Storage Capacity Thermal Storage	9.0 full load hours
Storage Integration	2-tank indirect
Storage Medium	Solar Salt
Solar Field HTF	Therminol VP1
Solar-Field Temp. Difference	100 K
Solar Field Collector Model	SKAL-ET 150
Number of SCAs per Loop	4
Number of Loops	Optimized to lowest LCOE


Basic parameters of the MED unit.

Capacity (Distillate volume flow)	pacity (Distillate volume flow) 46,000 m ³ /d	
Number of stages	10	
Yield rate	0.41	
Gained Output Ratio GOR	8.08	
Min / max allowed thermal load	40% 110%	
Specific thermal energy demand	81.8 kWh/m³	
Specific electric energy demand	2.0 kWh/m ³	

Basic parameters of the pumping system


Distillate volume flow	46,000 m³/d
Seawater volume flow	112,000 m³/d
Brine volume flow	66,000 m³/d
Pumping system efficiency	86%
Recovery turbine efficiency	89%

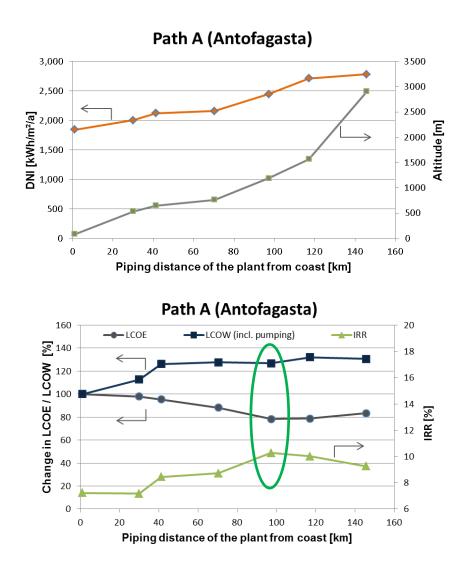
Thermal Oil Parabolic Trough Plant

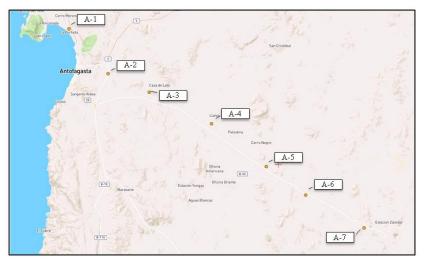
CSP+MED cost assumptions

Economic parameters of the MED unit and pumping system.

Plant live time (CSP+MED)	25 years
Rate of interest	7%
Specific capital costs for MED Plant	1,253 US\$/(m³*d)
Specific capital cost for water pipeline (by distance)	0.010 US\$/(m³*100km)
Specific capital cost for pumping stations (by vertical lift)	0.052 US\$/(m³*100m)

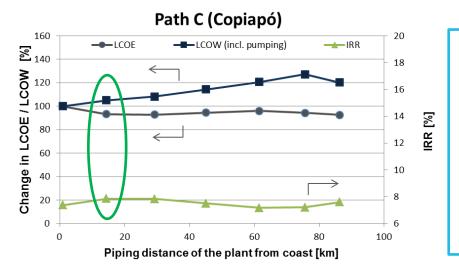
Sources: [Kurup2015], [Voutchkov2013], [Zhou2005]


methodology


Aim: Proof of concept

- Generic plant locations along path (checked for slope and available area)
- CSP plant: 50MW thermal oil PTC with 2-tank molten salt storage
- Same CSP+MED plant design at all locations
 - fix MED size (at full condenser thermal load ~ 46,000 m³/d distillate)
 - But: number of loops optimized to lowest LCOE
- CSP plant operation to provide continious operation
- Assumed that MED is therm. insulated to avoid cooling down up to 4h
- Annual CSP+MED plant simulations in ColSim CSP (Fraunhofer in-house software)
- For comparability along paths: meteonorm TMY3 data sets

Results


- Solar resource and altitude of the plant define the best location of CSP+D cogeneration plants
- high annual DNI sum \succ ~2,600kWh/(m²a) results in plants located 90 km away from the coast

Results

- Solar resource and altitude of the plant define the best location of CSP+D cogeneration plants
- Even moderate DNI sums ~2,000 kWh/(m²a) justify a location ~20km inlands

Conclusions

- Study used conservative assumtions:
 - Measured DNI probably higher than used meteonorm generic data
 - "small" PTC CSP plant with maximum possible MED
 - CSP+MED layout was fixed, not optimized for each location
 - Publicly available cost data of 2015
- Even with conservative assumptions inland desalination by means of CSP+MED seems feasable
- LCOW (incl. pumping) < 1.70US\$/m³ could compensate LCOE above market price

Outlook

Further study:

- Iarger (~100MW) CSP tower + MED
- Case study: Match CSP/MED size with specific electricity & water demand (e.g. mine / settlement / agriculture)
- Case studies for other locations with very good inland DNI: South Africa, Saudi Arabia etc.
- Improve plant concept:
 - Add medium temperature thermal storage for balanced MED operation
 - Run MED from thermal storage \rightarrow keep PB efficiency
- Combine CSP+MED concept with seawater pumped storage

References

[Fluri2011]	Fluri, T. P.; Cuevas, F.; Pidaparthi, P. & Platzer, W. J.: "Assessment Of The Potential For Concentrating Solar Power In Northern Chile". Proceedings of the 17th SolarPACES Conference, 20 23. September 2011, Granada, Spain, 2011
[Kurup2015]	P. Kurup and C. S. Turchi, "Parabolic Trough Collector Cost Update for the System Advisor Model (SAM)," National Renewable Energy Laboratory NREL, (2015).
[Voutchkov2013]	N. Voutchkov, "Desalination Engineering: Planning and Design", (2013)
[Zhou2005]	Y. Zhou and R. S. Tol, "Evaluating the costs of desalination and water transport," Water Resources Research, 14, (2005).

Thank you for your attention!

Speaker: Raymond Branke, Fraunhofer ISE

raymond.branke@ise.fraunhofer.de

www.ise.fraunhofer.de

Co-Authors:

Tom Fluri, Fraunhofer ISE

Patricio Valdivia Lefort, Fraunhofer Chile Research Center for Solar Energy Technologies (CSET) / Universidad Técnica Federico Santa Maria, Electrical Engineering Department

