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Particle Receiver Technology in ASTRI
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ASTRI approach to high temperature

e Parallel development of alternative options for down-selection:
> Solar expanding vortex receiver
> CSIRO - Falling particle receiver
> Other concepts at earlier stage

 Seeking to leverage through global collaboration:
> More effective outcomes
> Shared resources
> Reduced development time

Centre for Energy Technology



CET Research Programs involving CSP particle technology
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Solar expanding vortex reactor
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Solar Energy, 141, 25-37 Secondary Concentrator Expanding Vortex
* High thermal efficiency * Limited to applications with transporting gas
* Direct irradiation — low exergy loss * Requires either:
* Suited to applications with transporting gas, » Window e.g. for reduction processes
e.g. Calcination > Aerodynamic curtain, with some convective

losses through aperture
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Current programs with Vortex Receiver/Reactors

Alumina calcination (CET / ETH) PIV measurements

Davis et al. (Green Chem, submitted) Chinnici et al. (Solar Energy, 2017) =  Analytical model

T g saws

Flow field measurements with PIV First campaign completed, 2" in progress (Lau)
CFD Model development Validated with available data (Chinnici)
Analytical heat transfer model Under development (PhD Davis)

Residence time measurement In preparation (PhD Davis)

System modelling In progress (Guo, for fuels / Davis for Power)

Hot testing First campaign completed, 2" in progress (Davis)
Aerodynamic Curtain In progress
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Solar-only Calcination
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Product Quality Improvements
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What we have learned:
Solar Expanding Vortex Reactor

* Cycle must be able to utilise or recover high temp air
> E.g. alumina calcination

* High heating rates can have process benefits

> Potential for improved quality in alumina calcination

* An unstable precessing vortex core can be generated
> Modelling (e.g. with CFD) is more challenging

Alwahabi, Nathan, Kueh, Cannon, Optics Express (under review), 2016,

Centre for Energy Technology



Solar hybridised dual bed gasification - One configuration
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Current programs with SHDBG
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Process modelling (pseudo dynamic) - Aspen-HYSYS First campaign completed (Guo et al, 2017)

System analysis: Parasitic losses, component analysis In progress (Guo et al.)

Feedstock assessments Under development (PhD He)
Analytical modelling & hot testing of receiver As per SEVR (PhD: Davis)
Hydrodynamic testing of dual beds In progress (Saw et al)

Supply chain assessments (including torrefaction) In progress (Roy et al)

Scale up In planning
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Well-to-wheel emissions for coal-biomass blends
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What we have learned:
Solar Hybridised Dual Bed Gasification

* Process offers significant potential advantages

> Moderate temperature of ~850 °C compatible with CST
> Continuous processing from hybrid greatly simplifies FTL

e Value proposition of solar identified

> Targeting biomass residues / co-products
> Increases output from limited resource

* Ongoing challenges
> Need to demonstrate a viable system to introduce CST into process
> Need to identify viable feed-stock paths
> Need to identify economically attractive scenarios
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Detailed investigations of particle laden jets

Particle-laden Compressed Air

\L Central Jet
Compressed Air J

- L] / Annulus

Flow
Conditioners
. = Overlapping
Wind Tunnel U R 11 R imaging
\ regions
Nd:YAG Laser Sheet Forming Optics
[ {HH) ﬂ:
In-situ measurements of relevant | g
. |, region for
well-characterised flow: || beam
_ _ [l profiler
»Velocity: PIV & hot wire (gas phase) |
»Particle concentration: Nephelometry Discharge to i
»Ray tracing & cluster detection s ik ' .
cam
»Particle temperature (PLIP) Dump
Cyclones
Lau & Nathan, 2014, J. Fluid Mech., 757, 432-457. #
University.of Adelaid L




Experimental Program
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1. Lau, T.C. and Nathan, G.J. (2017) “A method for identifying and characterising particle clusters in a two phase jet’,

|.J. Multiphase Flow, 8, 191-204.

2. Lau, T.C. and Nathan, G.J. (2016) “The effect of Stokes number on particle velocity and concentration
distributions in a well-characterised, turbulent, co-flowing two-phase jet, J. Fluid Mech., 809, 72-110.

3. Lau, T.C.W. and Nathan, G.J. (2014) “Influence of Stokes number on the velocity and concentration
distributions in particle laden jets”, J. Fluid Mech., 757, 432-475.
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Quantifying particle clustering
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Lau & Nathan (2017), I. J. Multiphase Flow, 88, 191-204.
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Exit Concentration Profiles from “long" pipe

Centre for Energy Technology



What we have learned:
Two-way coupled particle laden flows

* Well-characterised inflow conditions - challenging

> Fully developed two-phase flow: Yet to be fully specified
> Approached for L/d > 320 with turbulent 2-way coupled flow

e Stokes number influences radial mass flux distribution

> Particles preferentially distributed to walls for Sk, ~ 0.3
> Particles preferentially distributed to axis for Sk, > 10

* Stokes number influences particle clustering

» Strong for Sk, ~ 0.3
» Weak for Sk, > 10

* Diagnostic tools are emerging to advance understanding

> Experimental and numerical




Potential Collaborations

Joint development of high temperature particle receiver(s)
> Back-to-back comparisons under different reference conditions

» Shared facilities and resources

Joint development of suspension flow particle receiver systems
» Coordinated programs with complementary facilities & scales

> Investigation of complementary applications

Joint investigations of heat transfer in particle receivers
> Utilising complementary facilities at different scales
> Coordination through international working group
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Thankyou!

Centre for Energy Technology

Director: Professor Gus Nathan

W: http://www.adelaide.edu.au/cet/
T: +61 (0)8 831 31448

E: imer@adelaide.edu.au



http://www.adelaide.edu.au/cet/
http://www.adelaide.edu.au/cet/
http://www.adelaide.edu.au/cet/

