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THE AIM OF SOLTESS PROJECT

Development of a novel concept (STEM) of
Concentrated Solar Power (CSP) cogeneration system
with inherent thermal energy storage. The system is
based on a compartmented dense gas fluidized bed
and aims at the following targets:

 Reduction of the Levelized Energy Cost
(LEC)

 Simple - Robust - Reliable
 Modular concept
 Near-zero environmental impact
 Easy hybridization



STEM PLANTS
the 125kWth peak load
CSP plant at Buccino

the 2MWth peak load CSP 
plant at San Filippo del Mela



WHY A FLUIDIZED BED SOLAR RECEIVER?
Thermal characteristics:
 large bed-to-surface heat transfer coefficients, in the order of

several hundreds of W/m2K, which can be tuned by acting on
the fluidization parameters

 large effective thermal diffusivities, in the order of 0.001
m2/s, associated with convective transfer due to bubble-
induced and/or gulfstream motion of fluidized solids

steel concrete molten salts graphite fluid beds

ρ kg/m3 7800 2200 2000 1600 ∼1000

k W/mK 40 1.5 1 50 ∼2000

cp kJ/kgK 0.6 0.85 1.5 1.5 ∼1

α m2/s 8.5E-06 8.0E-07 3.3E-07 2.1E-05 ∼2E-03



HEAT TRANSFER MECHANISMS
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FG=Fluidizing Gas
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MF= Mass Flow meter
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Solimene et al., CFB-11 Proceedings of the 11th 
International Conference on Fluidized Bed 

Technology (2014)



HEAT TRANSFER MECHANISMS
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COMPARTMENTED DENSE GAS FLUIDIZED BEDS

 RECEIVER: Collection of
highly concentrated (100-
1000 suns) incident solar
radiation

 EXCHANGE: heat transfer
to the working fluid of the
thermodynamic cycle

 STORAGE: thermal energy
for equalizing the inherent
time-variability of the
incident solar radiation

System optimized to accomplish three complementary tasks:

The system is also equipped with an external heat exchanger for
partial recovery of the enthalpy of the effluent gas

Solimene et al., SolarPACES (2016)



COMPARTMENTED DENSE GAS FLUIDIZED BEDS

 The bed is compartmented by proper design of the windbox. No
physical separation is introduced within the bed to preserve the
fluidized bed thermal properties

 Each zone/compartment is fluidized independently of the others,
with the aim of establishing optimal fluidization conditions in each
zone, consistently with its function.

 Assumption: the compartmented windbox ensures effective
independent control of the desired fluidization regime in each
zone, even in the absence of physical separations between the
zones inside the bed.



Dynamic modeling of the Compartmented fluidized bed receiver

Buffer compartment is devoted to
distribute energy fluxes between the
other compartments

SCHEMATIC OF THE ENERGY FLUXES

TOP VIEW OF THE FLUIDIZED BED 
COMPARTMENTS

Solimene et al., SolarPACES (2016)



Study cases

 Case A: Reference case (even and steady fluidization). Fluidized
bed operated without partitioning of the fluidizing gas and
permanently fluidized at constant and uniform gas superficial
velocity (0.033 m/s).

 Case B: Non-controlled compartmented case (uneven and steady
fluidization). R, E, B and S sections fluidized independently of
each other. U=0.02 m/s in the S and B sections. U= 0.1 m/s in R
and E sections (to provide locally optimal values of hbed). The
overall gas flow rate in Case B is the same as that in Case A.

 Case C: Controlled compartmented case (uneven and unsteady
(pulsed) fluidization). Case B with additional implementation of a
control strategy aimed at minimizing energy losses and keeping
constant the firm capacity load.



Comparison of the day-averaged outputs of the model

Case Power, kW Efficiency, -

Incident 
radiation

Reflected 
radiation 

Fluidizing 
gas 

losses

Cavity 
radiative
losses

Cavity 
natural 

convection 
losses

Power 
to steam 

cycle 
cavity fluidized 

bed Overall

A 707 7.5 99 150 79 370 0.66 0.79 0.52

B 707 7.5 81 89 70 462 0.78 0.85 0.65

C 707 7.5 36 78 47 540 0.81 0.94 0.76

Solimene et al., SolarPACES (2016)



COMPARTMENTATION AND THERMAL DIFFUSIVITY
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PT: pressure transducer
TC: thermocouple
MFC: mass flow controller
Humid: humidification unit
CH: cartridge heater
Continuous red line:
compartmented windbox
Dashed red line:
Virtual bed separation
L: Long compartment
S: Short compartment

Humid Humid
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CH

 near-2D fluidized bed (2850x1860x200mm) with a thickness large
enough to prevent extensive wall effects for bubbles smaller than 120
mm.

 two spargers acting as gas distributors intentionally of different length
so to establish uneven bed fluidization with asymmetric patterns.

 the corresponding sections of the fluidized bed, as L (long), and S
(short)

Migliozzi et al., 
Powder Technolgy

in press (2016)



COMPARTMENTATION
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THERMAL DIFFUSIVITY: EVEN vs UNEVEN
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DIRECTLY IRRADIATED FLUIDIZED BED

Qpeak : 1100 kW m–2, d=20 cm
Wtot= 1200 W

Tregambi et al., Solar Energy (2016)



THERMAL MAPS AND COMPARTMENTAL MODEL

Nozzle-surface gap: 0.09 m 
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Tregambi et al., Solar Energy (2016)



BED SURFACE OVERTEMPERATURE
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The 𝛽𝛽-value
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experimental data
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Tregambi et al., Solar Energy (2016)



DIRECTLY IRRADIATED FLUIDIZED BED REACTOR
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Transparent window
resistant to high T Conically-

shaped
freeboard,
height=0.4 m

3 short-arc Xe lamps,
4 kWel each, with
elliptical reflectors

Thermal characterization
according to a a
previous study (Sol.
Energy 2016): peak
flux=3000 kW m–2,
average flux 390 kW
m–2, irradiated
power=3.2 kW

Radiant heaters

“Up” and “down”
thermocouples

Tregambi et al., SolarPACES (2016)



SOLAR CALCIUM LOOPING

Tregambi et al., Solar 
Energy (2015)

Tregambi et al., 
SolarPACES (2016)



CO2 CAPTURE EFFICIENCY
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QUESTIONS?
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