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research, innovation and technology transfer

Mission: Promote and conduct R&D&i activities on
sustainable energy technologies
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= Production of sustainable fuels (hydrogen and
advanced biofuels), o

= Solar Energy » | o e " it %
= Energy storage /i
= Energy systems with enhanced efficiency
= Power systems and demand management
= Valorization of CO, emissions

International staff: 83 people

Active R&D project grants in 2016: 50; external
funding: 2,6 M€

Collaboration with around 40 companies
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R&D Objective

Modular, efficient and dispatchable solar concentrating
technologies for power generation, industrial process
heat and production of solar fuels and chemicals.

Research lines

New modular schemes for high-efficient and
dispatchable solar thermal power plants and urban
integration

Solar receivers and reactors: cavity, volumetric,
rotary kiln, and particle receivers.

Thermal energy storage (latent heat,
thermochemical) for STE/CSP plants.

Solar fuels and chemicals production using metal
oxides

PCU Integration & environmental impact (advanced
cycles, water, glint and glare)

Experimental facilities

High-flux solar simulators and solar tower.

Working thermal powers at 1.5kW, 15 kW and 250
KW.

High Temperature Processes Unit
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Materials

m Reactor materials for very-high temperature
applications

m Thermochemical storage materials

Solar particle receivers and reactors
m Indirect-irradiated receiver upscaling

m Reactor concepts for thermochemical heat
storage

Integration of particle-based systems in CST

m Assessment of particle-based working fluids in
CSP

m Thermal storage
m Integration of advanced cycles

m Assessment on solar fuels and chemicals
production using metal oxides

Our main current activities on particle systems
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| dea Testing materials for Thermochemical heat storage

Cylindrical vessel composed of 3

100 Wh Reactor stacked bodies:

= Avoid entrainment of the particles

=  Simple mounting/dismounting/mainte-
nance processes

Chimney /—‘—\ = Easy material charge and discharge

= Technical specifications:
Cooling

@\

= Temperature up to 1200 °C

=  Pressures up to 2 bar
Rehctor

= Air mass flow rate up to 60
~\u flow control Nm3/h

mdheating " Thrée concentric layers: Non-porous
<> @] @ stage alumina, insulating material, stainless

Compressed steel envelop
air mlet st heating stage

Alvarez De Miguel, S., Gonzalez-Aguilar, J. & Romero, M., (2013). 100-Wh multi-purpose particle reactor for thermochemical heat storage
in concentrating solar power plants. Energy Procedia, 49, pp.676—683.
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dea Playing with T and flow rate — Packed vs. fluidized bed

MnOXx fluidisation [2.0, 3.6] mm; initial volume 2.4 |
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Long-term cyclability for pure and Fe-doped MnOx
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= Pure and doped manganese
oxide has been tested in
fluidization and fixed bed
conditions

= Challenges on mechanical
(shaping, sintering, attrition)
and kinetic performance of
TC materials
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Many potential options

Receiver HTF Storage HTF Power Block HTF
* Air * Particles : * Steam Rankine

* Particles : : * Brayton Air, He, sCO,
*sCO, :

* Steam

* Molten Salt
* Thermal Oil

4

)

: m | : HP —@
y

: W : CONDENSER

: : FEEDWATER
P : PUMP

s -~ —Q

: INTERMEDIATE :
SOLAR FIELD SOLAR TOWER  : STORAGE & HX SYSTEM POWER BLOCK

T\

AU,

Particles / Particles / subcritical Steam Rankine, see Spelling et al., Energy Procedia 69 ( 2015) 1160 — 1170
Particles / Particles / sCO2, see Reyes et al., Energy 112 (2016) 17-27
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BENEFITS

Decoupling the Solar loop from the Storage loop and the Power
loop

Avoiding particles transportation to the receiver

Improving power block operation mode (transient performance or
24]7)

Allowing cheap, safe, flexible, high energy density and highly
efficient thermal energy storage (TES) to be used with any kind of
heat transfer fluid

No temperature restrictions. Higher & lower storage temperature
compared to TES based on molten salt

“‘Easy” integration of thermochemical (i.e. assuming gas-solid
reactions) and sensible heat storage

LIMITATIONS

Energy and exergy losses if an intermediate loop is necessary
Cost?

Benefits vs. Limitations
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Receiver Storage P.Block : Comments
HTF HTF WTF

1 Air Particles Steam JI% High temperature potential provided by air

D Q . .
v receiver not exploited at the power block

2 Air Particles Air <'VCA></‘> Allowing for high temperature TES for air
/R cycles

3 Air Particles sCO, X%  Allowing for high temperature TES for sCO,
A cycles

4 Steam Particles Steam % Feasible TES for DSG receivers but energy

ah losses due to pinch limitations (subcritical)
5 Steam Particles Air <?CA><{> Feasible TES for DSG receivers but low
DVQ

efficiency of the air cycle (low temperature)

6 Steam Particles sCO, <?CA><{> Feasible TES for DSG receivers coupled to
sCO, cycles but low temperature (steam)

71 M. Salts Particles Steam <?QA4> Feasible option, but it would be more efficient
using molten salts as storage medium

8| M. Salts Particles Air Xy  Feasible option, but it would be more efficient
using molten salts as storage medium

9| M. Salts Particles sCO, <« %~ Feasible option, but it would be more efficient
using molten salts direct storage




| dea

» Temperature evolution decision-maker

particles

#1
A .~ TES
T air
receiver \ /
water / steam
(Rankine cycle)
>
# A2 / pa?ticles
T . TES
air

receiver

™~

(Brayton cycle)

T

Possible configurations

water / steam
# A4 (DSG receiver)
particles
TES
\ water / steam
(Rankine cycle)
>
# 8 S
A
\

particles
TES

\

water / steam
(Rankine cycle)
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Direct Steam Generation (DSG)

central receiver & subcritical steam

Rankine cycle using Dense 7?4:
Particles Suspension (DPS) - based
TES
Heliostat
field

Plant layout proposal
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Heat exchanger description

= DPS heat exchanger coupling the solar loop with the power block
= DPS HX model required for more realistic & accurate power plant

system analysis

Each stage consists of a cylindrical shell divided in
four main sections with an external layer of thermal
insulation.

= A truncated-cylindrical container with N bundles of
tubes where the particle fluidization takes place.

=  Two semicircular distributors next to the container
that enable the inlet and outlet water into the
tubes.

= A gas distributor on the bottom of the heat
exchanger allowing a homogeneous fluidization of
particles.

= A free space on the top of the fluidized bed to
prevent the particle drag out of the heat
exchanger.

Free space
Front |-o 00000

Gas
distributor

Lateral
view

Water
distributors

Container
TOp
view

Shell

Se—

Heat Exchanger Modelling in Central Receiver Solar Power Plant Using Dense Particle Suspension,

SolarPACES 2016, Reyes-Belmonte et al.
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Assuming same turbine inlet steam
temperature

No pinch-point restrictions for
supercritical cycle.

Subcritical Rankine Cycle
~TDPS,out -+«TDPS,in

=Tw,in -+ Tw,out
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dea What'’s next? Development of components in TRNSYS

Developing a TRNSYS component
of the DPS - water/steam heat
exchanger based on a detailed
model

No existing heat exchanger model
to account for DPS

%
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Development of components in TRNSYS

Fortran programming for each DPS-HX component (preheater,
evaporator, superheater & reheater)
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TRNSYS Simulations results
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Possible collaborations in this WG (current ideas, but may be tomorrow...)

Materials
m Testing materials for very-high temperature @] TCS Power ST
applications (reactors and reactants) remocherca| nere storge I \

m Physico-chemical characterization

Solar particle receivers and reactors

m Analysis/Evaluation indirect-irradiated receivers
and reactors

m Contribute with future developments at 10kW
scale

Integration of particle-based systems in CST

' .
s Particle
Receiver

m Annual analyses, transients .

m Developed TRNSYS types or modules validated
using experimental data from SolarPACES
community

m Round Robin Tests on Assessment on solar fuels
and chemicals production using metal oxides
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