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Introduction
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 Ammonia (NH3) is an energy-dense chemical and a vital 
component of fertilizer
• Also finds use as potential fuel and in CSP 

thermochemical energy storage
 NH3 synthesized via the Haber-Bosch process

• Requires high pressures (15-25 MPa) and temperatures 
(400-500 ⁰C)
◦ Capital-intensive and only practical with large 

facilities

◦ Process including H2 production is responsible for 
~1.8% of global CO2 emissions1

 Ammonia synthesis consumes > 1% of the total energy 
worldwide2

1*IEA (2013), Technology Roadmap - Energy and GHG Reductions in the Chemical Industry via Catalytic Processes, IEA, Paris https://www.iea.org/reports/technology-roadmap-
energy-and-ghg-reductions-in-the-chemical-industry-via-catalytic-processes
. 2Institute for Industrial Productivity. Industrial Efficiency Technology Database http://ietd.iipnetwork.org/content/ammonia. 

Production of NH3 via a renewable, carbon-neutral technology powered by 
concentrating solar can mitigate climate and CO2 impacts
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Global greenhouse gas emissions versus production 
volumes (2010)*



Solar Thermal Ammonia Production (STAP)

An advanced solar thermochemical looping 
technology to produce and store nitrogen (N2) from 

air for the subsequent production of ammonia 
(NH3) via an advanced two-stage process

 Inputs are sunlight, air, and hydrogen; the output is 
ammonia

 Significantly lower pressures than Haber-Bosch

 Greatly decreases or eliminates carbon footprint

 The process consumes neither the oxide nor the 
nitride particles, which actively participate cyclically

3
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Cycle 1: Nitrogen Separation
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1 Farr, T. P.; Nguyen, N. P.; Bush, H. E.; Ambrosini, A.; Loutzenhiser, P. G., Materials 2020, 13 (22).
Bush, H. E.;  Nguyen, N. P.;  Farr, T.;  Loutzenhiser, P. G.; Ambrosini, A., Solid State Ion. 2021, 368, 115692.
Nguyen, N. P.;  Farr, T. P.;  Bush, H. E.;  Ambrosini, A.; Loutzenhiser, P. G., Phys Chem Chem Phys 2021, 23 (35), 19280-19288.

• MOx thermally reduced by concentrated solar 
heat to form oxygen-deficient compound, MOx-δ

• MOx-δ reacts with O2 in air to re-oxidize, leaving 
behind purified N2

O2Q’’

Ba0.15Sr0.85FeO3-δ (BSF1585)

∆δ
Reduction

Oxidation

Identify and optimize redox active metal oxide 
(MOx) materials for N2 recovery via air separation1



Packed Bed Reactor

• Demonstrates air separation reaction
• Stationary bed (35-40 g BSF1585) with sweep 

airflow
• Gas measurement via RGA calibrated for pO2 range
• Fully cyclic thermal reduction and air separation
• Multi-cycle testing
• Range of T, 𝑉̇𝑉, pO2

Sweep/Oxidant
Gas Flow Control

Exhaust

Vertical Tube
Furnace

Packed
Particle

Bed

Gas Injection
Point

Annular
Tube

 Air separation studied via parametric analysis of 
reduction, air separation temperatures, multi-cycling

 Validation of heat and mass transfer flow models 
 All reactions (reduction/reoxidation) performed in air
 During reoxidation step, O2 gettered by material 

(BSF1585), leaving purified N2

White = calibration
Blue = thermal reduction and purge
Green = air separation
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Directly Irradiated Incline Flow Reactor
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• Directly irradiated cavity receiver, water cooled quartz window
• Thermal input from high flux solar simulator (HFSS)
• Flowing inclined bed of BSF1585
• Heated 5 kg hopper with linear actuator-controlled valve
• Collection and measurement of product O2

• Load cell to measure flow rate
• Thermocouples for particle and cavity measurements

Flow Calibration

HFSS Lamps
Particle Flow

Pre-heated Hopper Design

Heat Transfer 
Model



Cycle 2: NH3 Production

 Nitride is reduced by H2 to form Mny-γ+ NH3, then 
regenerated by N2 from 1st cycle

 Bulk reaction, not exclusively surface-catalyzed
 Nitride materials more challenging than oxide development

• Pool of candidates much smaller
• Thermodynamics are challenging; NH3 dissociates at 

high temperature
• Nitrogen diffusion in metal nitrides is slower and less 

common
• Synthesis more complex – usually reacting under 

flowing NH3 at high temperature in ammonolysis 
reaction

7

Identify and optimize metal nitride material (MNγ) 
that can be reduced by H2 to produce NH3, then 

re-nitridized directly by N2 to close the cycle
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Candidate Identification

 Initial thermodynamic calculations determined that 
material should be at least a ternary nitride (MM’N) 

 Down-selected to 38 possible ternary compounds 
 Preliminary candidate: Co3Mo3N (CMN331)

• Can undergo reversible phase change to 
CMN661, losing 50 mol% of nitrogen:

2Co3Mo3N + 3/2H2 2Co6Mo6N + NH3

Co6Mo6N + 1/2N2  2Co3Mo3N
• Both phases crystallize in same space group    

(Fd-3m) – facilitate kinetics?
• Reports that material can be regenerated directly 

by N2

• Synthesized via oxide precursor method
 Expanded candidate pool to a family of single-phase 

A3BxN (A=Co, Ni, Fe; B=Mo, W; x = 2, 3) ternary and 
quaternary nitride solid solutions 
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*Hunter, S.M., Mckay, D., Smith, R.J., Hargreaves, J.S.J., Gregory, D.H., 2010, Chemistry of Materials, 22(9), pp. 2898-2907.
Gregory, D.H., Hargreaves, J.S.J., Hunter, S.M., Catalysis Letters, 2011, 141(1), pp. 22-26.
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Nitride Characterization

 XRD before/after cycling for phase identification
 Elemental analysis performed using ICP-OES and CHN to 

identify Co3Mo3.1N1.13
 Particle surface composition investigated with XPS, SEM/EDS, 

and TEM identified oxide surface layer
 Oxygen detected on particles surface using XPS and EDS

• Surface oxygen-rich layer observed
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9 CMN331 particle morphology

TEM images of CMN331 particleXRD of CMN331 before and after reaction



Nitride Reactivity at Ambient Pressure

 Series of reductions/re-nitridations performed at varying T and PH2

 Performed in TGA (low PH2) and tube furnace (high PH2, below)
 NH3 detected under both reduction and re-nitridation, under certain conditions

• Catalytic + bulk behavior?
 Does nitride activity differ under pressure?
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RGA Detected NH3Experimental conditions  



Ammonia Synthesis Reactor (ASR)11

Reactor designed to perform NH3 synthesis and nitride re-nitridation reaction 
under variable pressure and temperature, up to 30 bar  and 800 °C, respectively 
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Ammonia Production and Re-nitridation of CMN331
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 Initial NH3 peak  assumed to be hydrogenation of 
surface adsorbed N2

 At T > 600 °C, consistent co-production of NH3
and N2 in 100% H2 (no external N2 feed) 

 Sample can be re-nitridized under 100% N2 with 
no side-reactions observed

• P = 20 bar, T = 700 °C for both reactions

Results imply that lattice nitrogen participates in NH3 production 
in reversible CCM331  CCM661 bulk reaction

9/28/2022

NH3, N2 production rates and temperature profile of 
representative reduction step under 100% H2 (Cycle 6)



Co3Mo3N ASR Cycle Results
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Reduction 
step

P(H2)
bar

Thold
°C

thold
h

Steady r(NH3)
10-5 mol 
molN

-1 s-1

Steady r(N2)
10-5 mol 
molN

-1 s-1

NH3 yield
mol/molN

N2 yield
mol/ molN

Reacted solid-state 
nitrogen

mol molN
-1

Selectivity to 
NH3

2 20 700 2 2.32 0.455 0.121 0.0610 0.243 49.8%

3 20 700 2 2.93 0.923 0.151 0.111 0.372 40.5%

4 20 700 2 4.27 0.985 0.271 0.113 0.498 54.5%

5 20 700 2 2.86 0.413 0.154 0.0496 0.253 60.8%

6 20 700 2 3.20 0.643 0.183 0.0742 0.331 55.2%

7 20 700 2 3.29 0.792 0.225 0.0842 0.393 57.2%

8 20 600-720 0.5×5 -- -- 0.180 0.0641 0.308 58.4%

9 15 600-720 0.5×5 -- -- 0.148 0.0510 0.250 59.1%

10 10 600-720 0.5×5 -- -- 0.0995 0.0506 0.201 49.6%

11 5 600-720 0.5×5 -- -- 0.0428 0.0382 0.119 35.9%

 All re-nitridation steps were performed with 20 bar of 10% H2/N2 at 700 °C
 Sample held at 5 sccm H2 / 15 sccm Ar overnight, 1.2 atm, 120 °C

Cycling runs 
(constant T, 

pH2, t)

Steady production rates were calculated 
using averages of the last 10 min of 
stabilized rate data before cool-down

Reacted solid-state nitrogen was 
calculated by adding NH3 yield 

and two times of N2 yield 
(theoretical max CMN331

CMN661 = 0.5)

Selectivity to NH3 was calculated 
by percentage of NH3 yield in the 

reacted solid-state nitrogen

All cycles on same Co3Mo3N sample ‒ Reaction is cyclic
9/28/2022



System and Technoeconomic Analyses
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Develop and refine systems and technoeconomic 
models to guide materials choices, reactor design, and 

determine projected cost for a scaled-up system

Integration completed in a single 
MATLAB script that 
communicates with other 
support software to perform the 
simulation



Techno-economic analysis

 NH3 yield and cycle time have a high impact on the 
total cost of the plant

 The nitride cost is the most significant system expense, 
accounting for more than the 50% of the total CapEx, 
but it is also the most uncertain variable

9/28/2022 SOLARPACES 2022

15 Costs Calculation Units Value
Heliostat field $ 3,975,900.50
Tower $ 6,251,716.68
Receiver $ 1,009,800.00
OX reactor $ 336,600.00 
Lift $ 259,740.16 
Storage tanks ST1 & ST2 $ 1,344,389.90 
MO particles $ 3,551,288.54 
Storage tank ST3 and 
material $ 834,750.51 

Heat Exchangers $ 1,550,681.99 
Turboexpander $ 283,220.00 
Power Block $ 2,758,295.81 
Separation NH3 $ 107,307.00 
Separation N2/H2 $ -
AS & RN Reactors $ 3,326,583.31 
MN particles $ 91,336,698.62
Subtotal direct cost $ 116,926,973.02 
Contingency $ 8,184,888.11 
Total direct cost $ 125,111,861.14
Land cost $ 1,007,571.02 
EPC and owner cost $ 13,762,304.72 
Total indirect cost $ 14,769,875.74 
Total CapEx $ 139,881,736.88 
OpEx (fixed) $/y 2,797,634.74 
Particle loss $/y 355,128.85 
Additional heat $/y -
OpEx (variable) $/y 355,128.85 
Total OpEx $/y 3,507,892.45 
Total revenue $/y 474,058.12 

LCOA w/o H2 $/tonne 213.11

Capital expense distribution

N2 separation

Solar field & tower

Others

Balance of the plant

NH3 synthesis4.6%
7.3% 67.8%

3.9%

16.4%



Upcoming STAP SolarPACES Talks
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Evan Bush: “Demonstration of a Solar Air 
Separation Process to Produce High-Purity N2 via 
Ba0.15Sr0.85FeO3-δ Reduction/Oxidation Cycles,” 
Wednesday, 17:40 (Today!)

Alberto de la Calle: “Techno-Economic Analysis of 
Solar-Thermal Ammonia Production,” Friday, 8:30

Ty Nguyen: “Investigation of Co3Mo3N 
Reduction/Re-nitridation Extents as a Function of 
Temperature and N2 Partial Pressure for Solar 
Thermochemical NH3 Production,” Friday, 9:10

James Miller: “Solar Ammonia Production via Novel 
Two-step Thermochemical Looping of a 
Co3Mo3N/Co6Mo6N pair,” Friday, 9:50



Summary

 Solar Thermal Ammonia Production has potential to produce green ammonia 
using CSP, air, and water

 Air separation to purify N2 was successfully demonstrated with BSF1585 in 
packed bed reactor; on-sun reduction reactor under construction

 Metal nitrides (MNy) were successfully synthesized and characterized under both 
ambient and pressurized conditions
• Co3Mo3N shown to successfully produce NH3 when exposed to pure H2 at 

pressures between 5 – 20 bar 600 – 750 °C 
◦ Reaction with pure H2 ensures nitrogen source is bulk Mny

◦ Performance is cyclic
• Ambient reaction experiments imply there may be a catalytic aspect as well

 Technoeconomic and systems analyses show a path towards scale-up

9/28/2022 SOLARPACES 2022
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