

TOWARDS THE STANDARDIZATION OF MOLTEN SALT LOOPS' INSTRUMENTATION AND COMPONENTS

FLOW METERS

Presented by: **Dr. Tom Fluri** Fraunhofer ISE, Freiburg, Germany tom.fluri@ise.fraunhofer.de

Dr.-Ing. Marco Prenzel DLR, Köln, Germany marco.prenzel@dlr.de

Agenda – Flow Meters

- Test Environment
- Ultrasonic Flow Meters
- Venturi Tube
- Alternative Evaluation Method

Flow Meter Test Environment @ Fraunhofer ISE

Method implemented:

• A calibration method for flow meters has been developed using a gauging station including a high precision scale

Molten salt loop for gravimetric calibration of flow meters

Flow Meter

Compressed air connection

Mechanical decoupling

High precision scale

Mechanical decoupling

Flow Meter Test Environment @ Fraunhofer ISE

Method implemented:

- A calibration method for flow meters has been developed using a gauging station including a high precision scale
- Pre-tests were run with water at ambient temperature
- Volumetric flow in 1-minute time span indicated by flow meter is compared to weight increase on precision scale

Molten salt loop for gravimetric calibration of flow meters

Ultrasonic flow meter: Specification

- Commercial clamp-on sensor using wave guides was used
- Operating temperatures < 550 °C
- Evaluation for periods of constant flow rates (500-5000 kg/h)

Conclusion:

 Using a high precision scale in a gauging station was found to be suitable for the calibration of flow meters for molten salt

Remark:

• In the current setup only small tube diameters can be investigated.

Fraunhofer Ise MOSAICO Project Evora, 24th October 2023

Ultrasonic flow meter: Specification (DLR)

• Clamp-on sensor provided by Endress+Hauser Flow

MOSAICO Project

German Aerospace Center

Evora, 24th October 2023

- First prototype with operating temperatures < 550 °C
- Prototype avoids the use of Waveguides
 → Sensors in direct contact with
 the pipe surface
- Trace heating and insulation can remain on the pipe*

*Thermal insulation was removed during tests to allow quick changes to the component

Ultrasonic flow meter: Test setup (DLR)

- Inlet length > 50 pipe diameters
- Temperature measurement in the immediate vicinity downstream of the flow meter
 - \rightarrow Density calculation
- Coriolis flow meter functions as the main reference (limited to < 400 °C)

Ultrasonic flow meter: Experiments (DLR)

- Temperature measurement valid for density calculation (see on the right)
- 2 days of experiments
 - Day 1: 300 °C + mass flow variation
 - Day 2: 400 °C + mass flow variation
- Comparison of the prototype with installed clamp-on ultrasonic flow meters and Coriolis

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center MOSAICO Project Evora, 24th October 2023

Ultrasonic flow meter: Conclusions (DLR)

- Full results cannot be published (Confidentiality)
- Molten salts can be measured with ultrasound in the 1 MHz frequency
- Functionality of the prototype at high medium temperatures confirmed
- With optimal design a measurement uncertainty in the ±2% range seems feasible
- 2nd round of prototype tests in 2024

Coriolis measurement for experiment day 1 (300 °C)

Deutsches Zentrum für Luft- und Raumfahrt German Aerospace Center MOSAICO Project Evora, 24th October 2023

Venturi tube with Differential Pressure Transmitters (DPT)

Venturi tube + thermal

insulation

Fraunhofer Ise MOSAICO Project Evora, 24th October 2023

- Testing within SFERAIII
 trans national access scheme
- Results still to be processed

Alternative Flow Rate Evaluation - Time of Flight (ToF) Method

- Method developed to evaluate the flow rate with (existing) temperature sensors in the absence of dedicated flow sensors
- Only 4 flow meters installed in the field but >700 temperature sensors

Aerial view of CSP plant Andasol III, Granada, Spain including four subfields with 152 loops in total

(Rohani 2015)

Alternative Flow Rate Evaluation - Time of Flight (ToF) Method

- 5 Temperature sensors per loop
- Identification of temperature step responses in data from commercial CSP plant

Alternative Flow Rate Evaluation - Time of Flight (ToF) Method

Conclusions:

- Flow rate for each loop can be evaluated
- Paper to be published shortly in Journal of Solar Energy
- Accuracy to be improved in ongoing activities

Thank you!

Time for your Comments and Questions

Fraunhofer