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Abstract. This work presents a validated machine learning approach for developing
a surrogate model to simulate thermal energy storage (TES) systems. High-fidelity,
physics-based Modelica simulations provide accurate predictions but are computation-
ally expensive and unsuitable for real-time applications like operational assistance sys-
tems. To overcome this limitation, we train a Long Short-Term Memory (LSTM)-based
surrogate model on synthetic data generated across a wide range of operating condi-
tions, enabling rapid prediction of internal storage temperature profiles. The model is
validated using operational data from Synhelion’s solar fuel pilot plant in Jülich, Ger-
many. Results demonstrate that the surrogate achieves high accuracy on synthetic
test scenarios and promising, though heterogeneous, performance on real plant data.
These findings highlight the potential of the surrogate model for real-time applications,
including model predictive control and operational support.
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1. Introduction

Dynamic simulations are a powerful tool for investigating Concentrated Solar Power
(CSP) systems and for developing optimized control strategies. To this end, a dynamic
process model of a solar fuel production plant has been developed in Modelica, where
solar heat is used to reform biogas and steam into synthesis gas (syngas), which is
subsequently converted into synthetic crude oil [1].

However, high-fidelity physical simulations are computationally intensive and often
lack real-time capability, limiting their use in control and optimization applications. To
overcome this challenge, we propose a machine learning (ML) based surrogate model
for efficient thermal energy storage (TES) simulation. By training the ML model on
synthetically generated data from the validated process model, system behavior can
be captured without relying on computationally expensive physical equations. This
approach enables fast and accurate TES modeling suitable for real-time applications in
CSP control. In this work, we generate a diverse set of synthetic scenarios using the
Modelica TES model to create a comprehensive training dataset. A surrogate model is
then trained and evaluated in terms of predictive accuracy and computational efficiency
relative to the original simulation. Finally, we demonstrate the applicability of the trained
ML model by applying it to real operational data from the DAWN plant for solar fuel
synthesis in Jülich, Germany.

The following section reviews related work on TES modeling, machine learning
applications in energy systems, and surrogate modeling approaches, providing context
for the present study.

2. Related Work

2.1 Thermal Energy Storage Modeling in CSP

Thermal energy storage (TES) systems are a key component of Concentrated Solar
Power (CSP) plants as they allow the decoupling of solar energy collection from elec-
tricity or fuel production. Therefore, accurate modeling of TES dynamics is essential in
order to optimize plant operation strategies.

2.1.1 Physical Modeling Approaches

High-fidelity physical models typically rely on first-principle equations such as energy
balances, heat transfer correlations, and discretized representations of tanks or heat
exchangers. Lumped-parameter models offer computational efficiency but may neglect
spatial temperature gradients. Distributed-parameter or finite-volume models provide
higher accuracy, but require significant computational effort. These models are com-
monly used in process design and offline optimization, but are often too slow for real-
time control applications.

2.1.2 Physical TES Model

The validated process model of previous work [1] is based on the thermal storage built
at plant DAWN in Jülich. It contains ceramic storage bricks with ducts for the heat
transfer fluid (HTF), i.e. steam, to flow through. The model is spatially discretized
into lumped isothermal volumes. For each volume, the energy balances of the HTF
and storage material are calculated as well as the convective and radiative heat ex-
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change between them. The heat conduction flows within the storage and out through
the insulation layers into the environment, i.e. the thermal losses, are determined as
well. Depending on the flow direction, the TES is either being charged or discharged.
This model setup has been validated with operational data and is used to generate the
synthetic training data for a data-driven surrogate model.

2.2 Surrogate Models

Following the definition of Han et al. [2], Surrogate models are computationally inex-
pensive approximations of high-fidelity models that are costly to evaluate. They are
particularly valuable when direct optimization or repeated simulation of the high-fidelity
model is impractical due to long computation times, numerical noise, or the lack of
readily available gradient information. Surrogate based Optimization replaces direct
optimization of the complex model with an iterative process of building, optimizing, and
updating a cheaper approximation, the surrogate, thereby drastically reducing compu-
tational cost while maintaining acceptable accuracy. This predictor–corrector scheme
continues until a termination criterion is met and generally requires far fewer evalua-
tions of the expensive model than direct optimization.

2.2.1 Design of Experiments

The accuracy of a surrogate model depends strongly on the quality and representa-
tiveness of the data used for training. Design of Experiments (DoE) techniques are
commonly used to strategically select sample points in the input space, referred to as
factors, to ensure sufficient coverage while minimizing the number of expensive simula-
tions. Popular approaches include full and fractional factorial designs, Latin Hypercube
Sampling (LHS), Sobol sequences, Grid-Search and other space-filling strategies. DoE
plays a key role in ensuring that the surrogate adequately represents the relevant de-
sign space, which is essential for both global approximation quality and successful
optimization. [2]

2.2.2 Types of Surrogate Models

Surrogate models can broadly be categorized into physically based and data-driven ap-
proaches. Physically based surrogates rely on simplified physics or coarser discretiza-
tion of the original system and are sometimes referred to as low-fidelity models. These
models can be further refined or corrected using data from the high-fidelity model to
improve accuracy. In contrast, data-driven surrogates use statistical or machine learn-
ing methods to fit functional approximations directly to sampled data. Common tech-
niques include polynomial regression, radial basis functions, Gaussian process regres-
sion (Kriging), and neural networks. Together, these two categories offer a spectrum of
approaches, from physics-informed predictors to purely data-driven predictors. [2]

3. Thermal Energy Storage Surrogate Model

In this section, we present our methodology for developing a data-driven surrogate
model to simulate the temperature dynamics of a TES, based on the existing high-
fidelity process model. In contrast to physics-based surrogates, which rely on man-
ual declarations and simplifications, data-driven machine learning methods operate as
black boxes that can directly learn from data without the need for manually declared
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rules. Therefore, a machine learning approach was chosen to investigate the potential
of black-box modeling techniques.

The approach follows a two-step procedure: first, our design of experiment, the
generation of a large, diverse, and physically consistent synthetic dataset; second, the
training of a ML based surrogate model to accurately and efficiently approximate the
TES temperature evolution under varying operating conditions.

3.1 Synthetic Dataset Creation

Synthetic training data is generated by leveraging the predictive capabilities of the ex-
isting Modelica process model. Given the profiles of the HTF mass flow ṁ(t) and the
HTF inlet temperature THTF (t), the process model simulates the temperature response
TTES(t) measured at 14 sensors on the vertical center line of DAWN’s TES over a pe-
riod of 20 hours. These temperature profiles serve as labels for training a supervised
ML model.

TTES(t) =

T 1
Sensor(t)

...
T 14
Sensor(t)

 ∈ R14, t ∈ [0, 1200] (1)

While label generation TTES(t) is fully determined by the underlying physical logic
of the process model, ṁ(t) and THTF (t) as well as the initial condition TTES(0) must be
declared explicitly as simulation input.

Table 1. Design parameters for the generation of synthetic scenarios. The table lists input functions,
their associated parameters, explanations, ranges, and the discretization applied in the grid search for

the design of experiments.

Function Parameter Explanation Range Grid Step
Size

ṁ(t) mpeak peak HTF mass flow
during charging and
discharging cycles

0.05–0.25 kg/s 0.02

ṁ(t) tcycle period of charging-
discharging cycle

500–480 000 s 59937.5

THTF (t) T charging
HTF HTF inlet temperature

during charging
293.15–1473.15 K 73.75

THTF (t) T discharging
HTF HTF inlet temperature

during discharging
293.15–1073.15 K 195

TTES(t) T initial
TES homogeneous TES

temperature at t = 0
293.15–973.15 K 136

A synthetic scenario is uniquely defined by a set of five parameters, summarized
in Table 1. The HTF mass flow follows a periodic charging–discharging cycle, reaching
a peak mass flow mpeak in each phase, with the first phase starting as a charging cycle
at t = 0.

ṁ(t) = ṁpeak cos(
2π

tcycle
t) (2)

THTF (t) =

T charging
HTF if ṁ(t) > 0

T discharging
HTF if ṁ(t) < 0

(3)
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To model ṁ(t), we employ a cosinusoidal function of period tcycle(see eq. 2). A negative
sign of ṁ(t) encodes discharging mode, while a positive sign encodes charging mode.
The inlet HTF temperature THTF (t) is defined by two constant values (see eq. 3), for
charging and discharging modes respectively. Additionally, the initial TES temperature
TTES(0) is defined as a homogeneous value.
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Figure 1. Inputs of an example scenario generated according to our design of experiments (DoE);
mpeak = 0.05, tcycle = 180312, T charging

HTF = 1325, T discharging
HTF = 293, and T initial

TES = 429.
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Figure 2. Temperature evolution of the example scenario simulated with the process model.

These inputs based on rules, combined with a grid search of the rules parameters
(see Table1), form the basis of the design of experiments used to generate a diverse
set of realistic scenarios to train the surrogate model. In total, 50,000 unique scenarios
were created, each covering a 20-hour time span. Applying these scenarios to the
process model yielded the corresponding synthetic temperature data, which serve as
dataset for the development of the data-driven ML surrogate model.
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3.2 Surrogate Machine Learning Model

In contrast to the physics-based process model, the ML surrogate model computes
predictions by applying learned parameters to the input sequences, enabling rapid in-
ference while approximating the system’s complex thermal dynamics based on training
data. In the following, we describe the design and architecture of the surrogate model.
The final architecture is depicted in fig. 3.

Regression Head (FFN)

HTF Encoder (LSTM)

concatenate
encodings

future values to be simulated

single encoding
representing
recent TES
dynamics

last k observations

...

Embedding Layer

+

Linear Layer (Encoding Combination)

...

TES Encoder (LSTM)

Embedding Layer

Figure 3. Schematic overview of the surrogate model architecture. The model receives two distinct
input sequences: (i) the HTF sequence, including past, current, and planned future mass flow and inlet

temperature values, and (ii) the TES sequence, containing historical TES temperatures. These
sequences are processed separately and combined within the model to predict the TES temperature

profile at the current and future timesteps.

3.2.1 Objective and Input Sequences

Accurate predictions T̂TES(t) of the TES temperature profile TTES(t) require more in-
formation than the instantaneous HTF mass flow ṁ(t) and inlet temperature THTF (t)
alone. During charging and discharging, the vertical thermocline moves continuously
through the storage, while temperatures are measured only at discrete sensor loca-
tions. The position of the thermocline at a given timestep can be inferred from the pre-
vious TES temperature gradients. Consequently, the historical TES temperatures are
essential input features to capture the system’s state, while the historical and planned
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future HTF inputs provide the boundary conditions of the process. Formally, the surro-
gate model receives two distinct input sequences at timestep t:

• HTF sequence: the mass flow and inlet temperature of the heat transfer fluid,
including the past k timesteps, the current timestep, and np − 1 future timesteps,

XHTF (t) = [(ṁ(t− τ), THTF (t− τ))]1τ=k ∪ [(ṁ(t), THTF (t))]

∪ [(ṁ(t+ τ ′), THTF (t+ τ ′))]
np−1
τ ′=1

(4)

where k denotes the number of past timesteps and np the number of prediction
steps. This sequence provides the model with information about the driving input
dynamics that affect the thermal response of the storage system.

• TES sequence: the historical TES temperatures from the past k timesteps,

XTES(t) =
[
TTES(t− τ)

]k
τ=1

. (5)

Providing these past t − k..t − 1 temperatures allows the model to account for
the system’s current thermal state, which is critical for accurately predicting future
dynamics.

Selecting an appropriate k is crucial, as too short a context can omit important recent
dynamics, while unnecessarily large contexts can increase computational overhead
and irrelevant information negatively impacting efficiency and accuracy. We intuitively
select a historical window of one hour, k = 60, without additional hyperparameter opti-
mization or evaluation.

Based on the input sequences, the surrogate model ϕsurrogate then creates temper-
ature predictions for np timesteps (current timestep t and following:

ϕsurrogate

(
XHTF (t),XTES(t)

)
=

[
T̂TES(t

′)
]t+np−1

t′=t
∈ Rnp×ns , (6)

whereas ns is the number of sensor locations, each row of the prediction corresponds
to a timestep and each column to a sensor location.

3.2.2 Input Embedding and Encoding

Each timestep in the sequences of XHTF (t) and XTES(t) is first embedded indepen-
dently into a latent feature space of size h using a linear layer with ReLU activation,
yielding a richer representation that facilitates subsequent sequence encoding. The
embedded sequences are then processed by two Long-Short-Term-Memory (LSTM)
based encoders. LSTM eural networks have been proven effective in modelling se-
quential data, as they can capture both long-term and short-term dependencies in
input sequences like XHTF (t) and XTES(t) [3].

The TES encoder outputs only its final hidden state, providing a compact summary
of the past TES temperature trajectory. In contrast, the HTF encoder provides a context
vector for every timestep to be predicted. Because the LSTM processes inputs in
chronological order, each encoding can incorporate information from earlier timesteps
but not from future ones, thus preserving temporal order which aligns with the causal
nature of the prediction task.

For each timestep to be predicted, the corresponding HTF context vector is con-
catenated with the global TES encoding to form a combined representation of size 2h.
This combined vector is then passed through a linear layer with ReLU activation, which
not only reduces the dimensionality back to h but is intended to encourage the model
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to learn a joint representation that combines information from both input sources. In
our experiments, we set h = 128 based on heuristic considerations, as this dimen-
sionality offered a reasonable compromise between model complexity and runtime in
preliminary tests.

3.2.3 Prediction

In the final step, predictions of future TES temperatures are generated for each timestep
by processing the corresponding combined encoding of the HTF and TES representa-
tions. Each combined vector is fed independently into a regression head, implemented
as a feed-forward neural network, enabling parallel computation across all timesteps to
be predicted and thus improving inference efficiency. The regression head maps the
latent representation to an output vector whose dimensionality corresponds to the num-
ber of TES sensor locations ns, producing a sequence of predicted temperatures that
preserves the temporal alignment with the input sequence XHTF (t). This architecture
ensures that the surrogate model can simultaneously capture the complex nonlinear
dependencies between the system inputs and the evolving thermal state while main-
taining computational efficiency suitable for optimization applications.

3.2.4 Training and Inference

For training and evaluation, the 50,000 synthetic scenarios were randomly split into
training (70%) and test (30%) sets. All input features were subsequently normalized us-
ing z-score standardization. During training, the initial k = 60 timesteps of THTF , ṁ(t),
and TTES(t) of a scenario were provided as context, while the remaining timesteps
of each scenario were used as target values for prediction. Therefore during training
np = 1200− 60 = 1140.

During inference, for any given timestep t in a plant optimization application, the
last 60 minutes of measured data are provided as context, and the model predicts
future TES temperatures based on planned or simulated HTF inputs for up to 1140
timesteps.

4. Evaluation

In this chapter, the surrogate model introduced in Section 3.2 is evaluated. The evalu-
ation considers both the accuracy of the predicted TES temperatures compared to the
results of physics-based simulations and the computational efficiency in terms of infer-
ence speed. These analyses provide a quantitative basis for assessing the surrogate
model as a fast and reliable alternative for plant optimization tasks.

4.1 Prediction Accuracy

The accuracy of the surrogate model is assessed by comparing its predicted TES tem-
peratures with the results of the physics-based simulations. The root mean square
error (RMSE) is employed to quantify the deviation between predicted and reference
temperatures for each sensor across all test scenarios. This evaluation provides a clear
measure of the model’s ability to capture the temporal dynamics of the storage system
under the varying operational conditions represented in the dataset. Consistent with
the training procedure, a context size of k = 60 is used, providing the model with the
initial 60 datapoints as input context. Consequently, the prediction horizon for each
scenario is np = 1200− 60 = 1140 timesteps.
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Figure 4 summarizes the RMSE distribution across all sensors and test scenarios.
The median RMSE values remain below 3 K for all sensors, indicating consistently ac-
curate predictions across different positions within the TES. Even the maximum errors
observed in the test cases do not exceed 11 K, demonstrating that the surrogate model
reliably captures the system dynamics, with only minor deviations in extreme cases.
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Figure 4. RMSE distribution across all sensors and test scenarios. Median values remain below 3 K,
while the maximum error does not exceed 11 K.

Additionally, we conducted an external validation of the surrogate model using op-
erational data measured during a Burn-In Test of the DAWN plant (see Fig. 5) to com-
plement the validation performed on synthetic scenarios. This additional evaluation
aims to assess the model’s generalization capability under real operating conditions.
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Figure 5. Measured HTF inlet Temperature and HTF Mass Flow Rate during a Burn-In Test. Y-Axis has
been non-dimensionalized.

Table 2 compares the RMSE of the surrogate model predictions against those of
the physics-based simulation. Although the surrogate model achieves sufficent accu-
racy on synthetic test scenarios, this additional validation reveals heterogeneous accu-
racies on operational data. For several sensors (for example indices 1, 3, and 5) the
surrogate even outperforms the physics-based model, whereas for sensors 6 and 8–14
the prediction errors are substantially higher. This discrepancy is most likely caused by
data drift. A comparison of THTF and ṁ profiles from the synthetic training data (see
Fig. 1) and the operational dataset (see Fig. 5) indicates that they originate from differ-
ent probability distributions. The synthetic scenarios do not cover a build-up of THTF ,
whereas the measured ṁ signals contain characteristic noise patterns and short-term
fluctuations that are absent from the synthetic scenarios.

As a result, during inference the surrogate encounters previously unseen input pat-
terns, which likely degrades prediction accuracy. These results emphasize the impor-
tance of including realistic characteristics of real measured operational data in future
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dataset generation in order to improve model robustness under real-world conditions
as part of future work (see Section 5).

Table 2. Comparison of root mean squared errors (RMSE) between the surrogate model and the
physics-based simulation across individual TES sensor locations. While the surrogate achieves lower

errors than the physics-based model for some sensors (e.g., indices 1, 3, and 5), it performs
considerably worse for others (e.g., indices 6 and 8–14), highlighting heterogeneous generalization

performance on operational data.

Sensor Index Surrogate Model RMSE Process Model RMSE
1 2.32 8.54
2 9.2 3.33
3 4.1 16.08
4 11.55 6.45
5 7.43 13.49
6 20.17 4.03
7 20.19 18.11
8 35.78 3.71
9 47.93 12.18
10 61.3 27.52
11 50.11 11.83
12 47.93 12.18
13 46.7 24.98
14 49.6 37.74

4.2 Computational Efficiency

In addition to predictive accuracy, the practical applicability of the surrogate model relies
on its computational efficiency. Table 3 summarizes the distribution of inference times
for both the surrogate and the physics-based simulations across all test scenarios.

Table 3. Comparison of inference times between the surrogate and physics-based process model
across all test scenarios. The surrogate achieves consistently low and stable runtimes, whereas the

physics-based simulations exhibit significantly higher variability and occasional extreme outliers.

KPI Surrogate Model Process Model
Mean 0.01779 5.15763
Standard Deviation 0.00167 10.57368
Minimum 0.01573 0.12891
25% Quantile 0.01719 1.82712
Median (50%) 0.01756 2.03693
75% Quantile 0.01803 2.65189
Maximum 0.06812 145.05

The surrogate model demonstrates consistently low computation times, with a nar-
row range of values (Mean = 0.01779 s, Maximum = 0.06812 s, Standard Deviation =
0.00167 s), while the physics-based simulations show a wide distribution of runtimes
and occasional extreme outliers (Mean = 5.15 s, Maximum = 145.05 s, Standard De-
viation = 10.57 s). This indicates that the surrogate not only provides fast evaluations
but also ensures predictable and stable efficiency.

Quantitatively, the surrogate achieves an average speed-up of a two order magni-
tude compared to the physics-based model on the synthetic data. When applying to
the measured data of the Burn-In Test (see Fig. 5), the physical model is even more
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inefficient due to non-constant input data and therefore reduced discretization of the
Solver. In fact, the phyisical model takes around 67 seconds in contrast to the pre-
dictable 0.014 seconds of the surrogate model, resulting in a speed up of three orders.

Such a predictable and stable reduction in computation time as well as the possibil-
ity of batched computation enable the simulation of thousands of scenarios within mil-
liseconds to seconds, making the surrogate particularly suitable for optimization loops
and real-time predictive control applications.

5. Conclusion & Outlook

In this work, we presented a two-stage methodology for developing a surrogate model
capable of accurately and efficiently representing the dynamic behavior of a thermal
energy storage system. In the first stage, synthetic training data was generated using
a validated physics-based process model. In the second stage, a machine learning
architecture was designed and trained on synthetic data to obtain data-driven surrogate
model.

The results demonstrate that the surrogate model reproduces the system dynamics
with high accuracy on synthetic test data while achieving a computational speed-up of
several orders of magnitude compared to the physics-based simulation. This significant
gain in efficiency makes the approach well suited for time-critical applications such as
model-based optimization or real-time operational support. Additional validation on
measured plant data revealed heterogeneous performance, which is likely to be to
be attributable to a data drift between synthetic training scenarios and real operating
conditions. This highlights the importance of addressing distribution shifts to further
improve robustness as part of future work.

Looking forward, a key next step will be to solve the observed data drift. This
may involve extending the design of synthetic scenarios to include realistic fluctuations,
measurement noise, and temperature ramp-up and ramp-down profiles. Alternatively,
the existing synthetic dataset can serve as a basis for pretraining to capture the funda-
mental thermal dynamics, followed by fine-tuning on measured data to adapt the model
to the real process. Furthermore, a continuous monitoring of model performance will
be essential to detect future data or concept drifts. Seasonal variations in operating
profiles as well as hardware modifications, such as component replacements, may
gradually alter the system behavior. Ongoing evaluation and, where necessary, pe-
riodic retraining will ensure that the surrogate model remains reliable throughout the
plant’s lifecycle.

Beyond methodological refinements, the surrogate model opens promising oppor-
tunities for deployment. Its integration into model predictive control frameworks and
operational assistance systems could enable rapid simulation-based optimization and
provide real-time decision support.
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