

AGENDA

- Design and Manufacturing
- 2 Experimental Operation
- 3 Thermal Model and Assessment

Design and Manufacturing

Page 3 9/23/2025 © Fraunhofer Chile

Design and Manufacturing Our Country

Chile's World-Class DNI Levels

- Northern Chile, particularly the region of Atacama Desert, records some of the highest Direct Normal Irradiation (DNI) in the world, exceeding 3,500 - 3,600 kWh/m² per year.
- The extensive north and center regions provides vast (+1500 km) areas with consistent high DNI (7-10 kWh/m² per day), ideal for solar tech. deployment.
- Chile's solar resource makes it a reference country for solar projects, attracting local and international investment and enabling solar technologies deployments (PV: 11 GW, +680 installations).

SOLAR RESOURCE MAP

DIRECT NORMAL IRRADIATION

ESMAP

This map is published by the World Bank Group, funded by ESMAP, and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.i

9/23/2025

Design and Manufacturing Inspiration

Stellenbosch's Flat Mirror Solar Dish

- Built with hundreds of small flat rectangular mirrors focusing onto a central receiver.
- Demonstrated temperatures above 1200 °C, enabling applications such as manganese ore processing [1].
- Served as our inspiration to design a concentrator with a simplified geometry that reduces the number of reflector elements required.
- There are recycling companies in Chile interested in clean process of aluminum. Green Aluminum.

Figure 1: Stellenbosch's Flat Mirror Solar Dis

[1]: L. Hockaday, F. Dinter, T. Harms, and Q. Reynolds, "The solar thermal treatment of manganese ore," AIP Conf. Proc., vol. 2126, no. 1, p. 150003, 2019

Design and Manufacturing Optical Design

Annular Fresnel Array Concept

- Revolution on a Fresnel array of mirrors.
- First prototype had 10 rings. Each ring has a width of approx. 10 cm.
- Aperture Area: 3.09 m²
- Theoretical Receiver Area (20 cm disk): 0.0314 m²

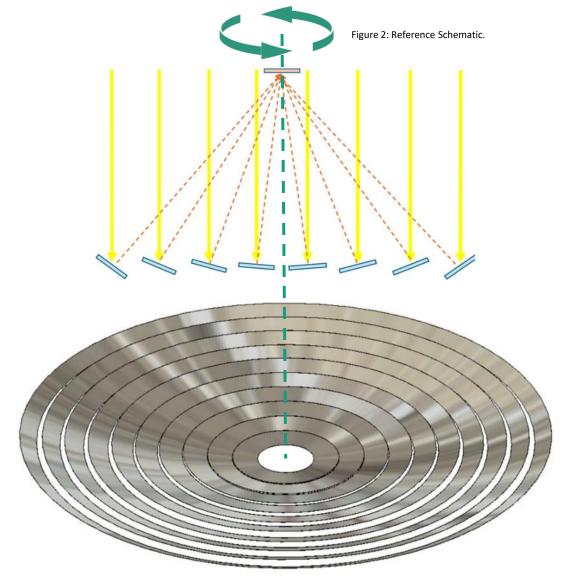


Figure 3: Initial CAD design of annular array

31st SolarPACES Conference

Design and Manufacturing Optical Design

Raytracing Simulation

- First prototype had 10 rings.
- Aperture Area: 3.09 m²
- Theoretical Receiver Area (20 cm disk): 0.0314 m²
- Concentration factor: 98.4 suns.
- Simulation: Assuming a reference DNI of 1000 W/m², reflectivity 0.95, the receiver thermal power was 2774 W, achieving an optical efficiency of 0.89.

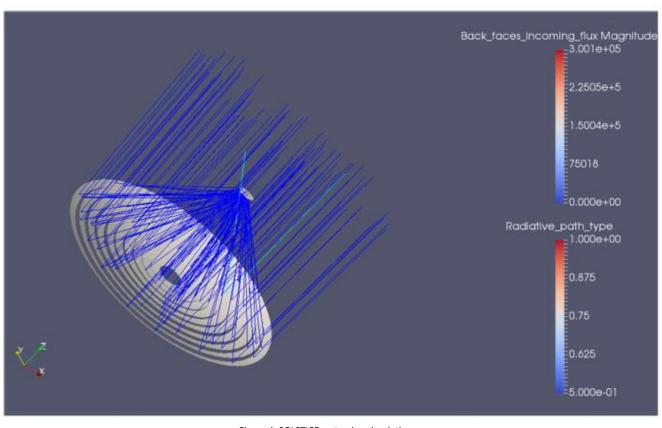
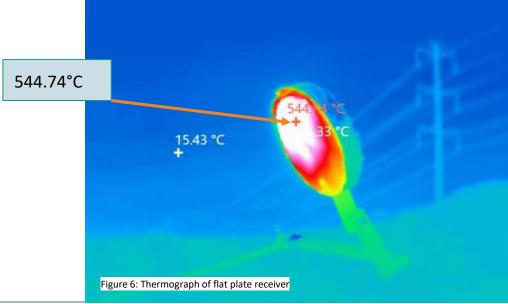
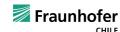


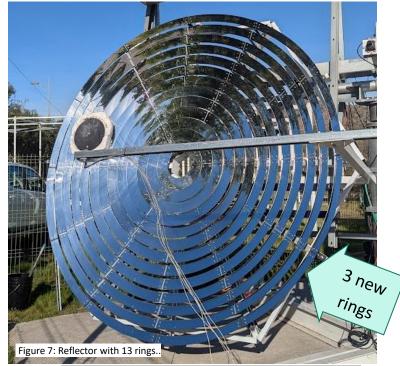
Figure 4: SOLSTICE raytracing simulation.

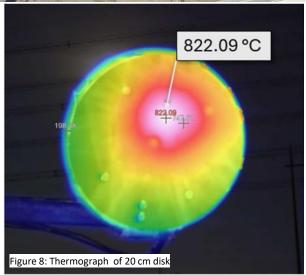


Design and Manufacturing First Prototype

First Prototype Manufacturing.


- Reflector Material: Silver-plated acrylic sheet.
- Smaller rings divided in 3 sections. Bigger rings divided in 6 sections. 48 pieces in total.
- Manufactured by Laser cutting.
- **Initial Testing:** Autumn, DNI: ~800 W/m². Max Temperature: 544.74°C
- Internal Milestone: Reach 750°C.
- Conclusion: Increase area -> more rings. Increase to **13** rings.





Design and Manufacturing First Prototype

Second Prototype Manufacturing.

- 13 rings. Rings with 3, 6 and 12 sections. 111 acrylic pieces.
- Aperture area: 5.3 m²
- Concentration factor: 169 suns.
- Thermal Power: 3935 W at DNI 1000 W/m² for 20 cm disk (simulation).
- Initial Testing: Winter, DNI: ~850 W/m². Max Temperature ≈ 822°C
- Interal Milestone: 750°C. Reached.
- **Next Step:** Receiver Design and Manufacturing.

Design and Manufacturing Receiver Design

We take inspiration from laboratory-grade furnace.

- High purity graphite crucible used in non-ferrous metal casting.
- Furnace body made of insulating firebricks.

Figure 9: Reference High purity graphite crucible.

Design and Manufacturing Receiver Design

Custom-made furnace.

- Concentrated solar flux enter through the bottom of the furnace and is absorbed by the crucible.
- A transparent glass-ceramic window was used to reduce heat losses.
- Crucible diameter: 6 to 10 cm.
- Aluminum scrap is loaded from the top.

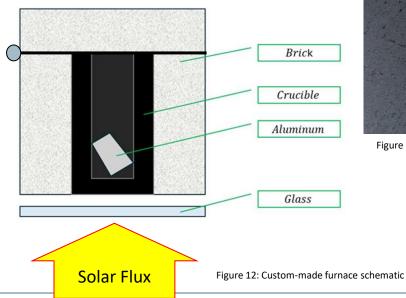


Figure 13: Pictures of custom-made furnaces

Design and Manufacturing Receiver Design

Custom made Furnace.

- The furnace was mounted on the focal point.
- Three sizes of crucible were used -3, 5 and 6 kg nominal capacity (rated as gold mass, a common crucible standard).
- Furnace mass ranged from 6-8 kg. Crucible mass from 0.5-1.0 kg.
- Crucible diameter was smaller than initial 20 cm receiver disk, which reduce the solar absorption area at the receiver.

Figure 14: Picture of furnace installed.

Figure 15: Picture of furnace installed.

System Overview 2nd Prototype Key Parameters

- Aperture area: 5.3 m²
- Geometric concentration (75 mm crucible): 1200 suns
- Theoretical Optical Efficiency (75 mm crucible): 0.45
- Theoretical Useful Power (DNI = 1000 W/m²): 2385 W
- Batch Capacity: up to 700 g of aluminum.
- Melt rate: To be determined experimentally.

Experimental Operation

Page 14 9/23/2025 © Fraunhofer Chile

Informationsklassifizierung -

Procedure

- 1. Load the crucible with aluminum scrap.
- 2. Enable sun tracking until the charge reaches melting temperature.
- 3. Verify if aluminum is fully molten; if so, pour into the mold.

Easy, right? Not really.

Figure 17: Pictures of the procedure developed.

First Test

- Aluminum alloy: AA 7178.
- Initial charge: 120 g.
- Melted Mass: g. (partial melt observed)
- Average DNI (during test): 1000 W/m²
- Duration: 84 min.
- Maximum measured temperature: 650°C

Pyrheliometer co-mounted with concentrator for DNI logging.

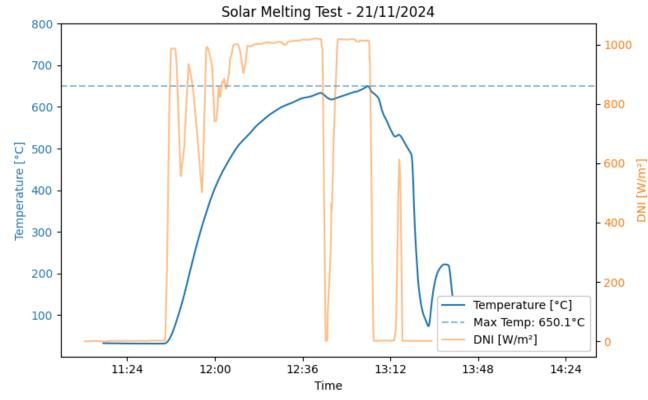


Figure 18: Solar melting test – 21/11/2024. Temperature and DNI over time.

Analysis

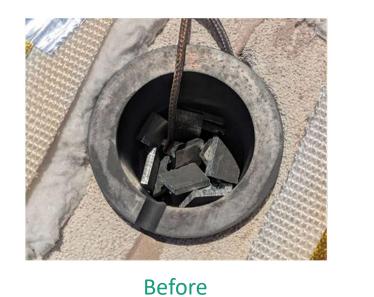


Figure 19: Batch Outcome: Crucible Load vs. Resulting Puck — Impurity Evidence

Aluminum began the melting process, but due to surface impurities, the melting required more time (energy).

2nd Test

Figure 20: Picture Resulting Puck — Impurity Evidence

2nd Test

Figure 21: Picture Solidified Sample — Impurity Evidence

3rd Test

Figure 22:Feedstock — aluminum scrap (3rd test)

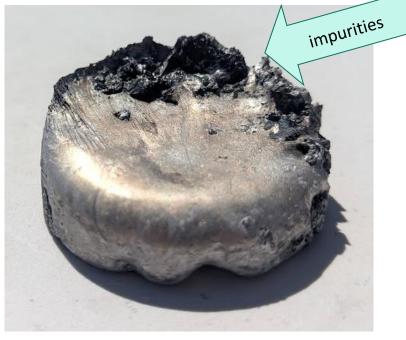


Figure 23:Cast puck — surface impurities

2nd Test

Figure 21: Picture Solidified Sample — Impurity Evidence

3rd Test

Figure 23:Cast puck — surface impurities

4th Test

Figure 24: Cast puck — surface impurities

We have perfected the remelting process but the casting was under developed.

5th Test

Figure 25: Pouring molten aluminum into the mold

Successful casting!

Figure 26: Freshly cast aluminum sample (hand-held)

Figure 27: Freshly cast aluminum sample

Really long tensile specimen

Figure 28: More pictures of remelting samples. Long tensile specimen.

Three casts in a row

Figure 29: More pictures of remelting samples. Three aluminum casts.

Fraunhofer-branded ingot

Figure 30: More pictures of remelting samples. Fraunhofer-branded ingot

Having established a safe, reliable casting procedure, we focused on increasing the melting rate

Test #21. Maximum Output Day.

Alloy: AA 4032

Average DNI (during test): ≈ 900 W/m² (early autumn)

Total poured mass: 1770 g.

Duration: 327 min (≈ 5.5 h)

Average melting rate: 322 g/h

Maximum measured temperature: 596.2 °C.

Five successful castings.

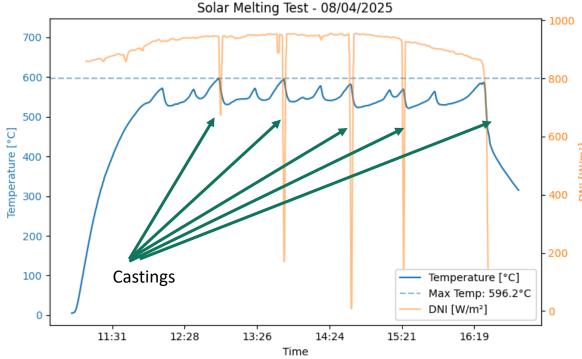
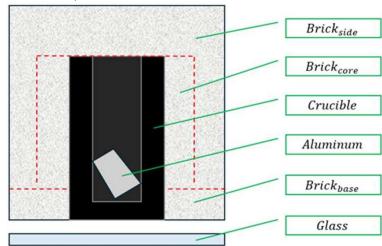


Figure 32: Solar melting test – 08/04/2025. Temperature and DNI over time.

Page 24 23-09-2025 © Fraunhofer Chile - Informationsklassifizierung -

Thermal Model and Annual Assessment


Thermal Model

Lumped-Resistance Thermal Model

Simplified lumped-resistance model

- Six bodies were considered: Aluminum, Graphite Crucible, Insulating firebricks (3 virtual bodies), Glass-ceramic window.
- Convection and radiation heat losses were included.
- Optical properties of glass-ceramic window were considered.
- Aluminum: Alloy 4032 alloy properties.
- Parameter tunning: fitted to the crucible—brick interface temperature to reproduce the receiver's thermal inertia.
- Validation: RMSE 17-20°C, mainly due difference between manual field operation and the automatic control assumed in simulation.

Figure 35: Receiver cross-section and lumped bodies used in the model

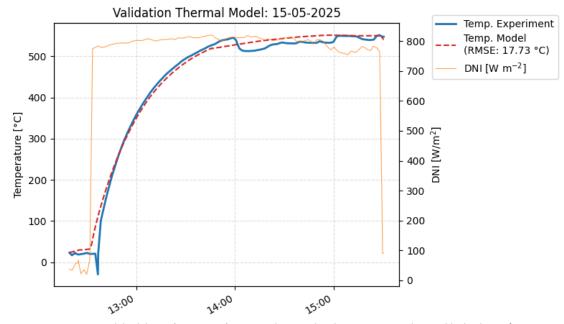


Figure 36: Model validation (15-05-2025): measured vs. simulated temperature at the crucible-brick interface

Annual technical assessment **Current Location and other cities**

- Current installation location: Santiago, Chile.
- Daily average DNI: 7.58 kWh/m²/day
- Summer Conditions:
 - DNI up to 1,050 W/m²
 - Ambient Temperature up to 42°C.
- Additional assessment: several northern-Chile cities were assessed using TMY data from Explorador Solar[1], provided by Chile's Ministry of Energy.
- Results: Annual Aluminum Output (model):
 - 702 kg in Santiago.
 - 1,237 kg in Calama.

[1] A. Molina, M. Falvey, and R. Rondanelli, "A solar radiation database for Chile," Scientific Reports, vol. 7, Art. no. 14823, Nov. 2017

SOLAR RESOURCE MAP

DIRECT NORMAL IRRADIATION

CHILE

This map is published by the World Bank Group, funded by ESMAP, and prepared by Solargis. For more information and terms of use, please visit http://globalsolaratlas.info

Conclusion Experience and Learnings

- We successfully designed, built and operate a novel solar concentrator capable of melting and recycling aluminum.
- Although the process required extensive trial and error, in-house development and local manufacturing made iteration fast and effective.
- We established a prototype that will serve as a testbed for future reflector, receiver design and industrial heat-integration.

Developing locally turned budget into know-how, experience, and talent—shifting us from users to **creators**.

Figure 37: Fresnel annular reflector.

Thanks for your attention!

Contact Information:

Pablo Castillo
Research Engineer
Fraunhofer Chile Research
pablo.castillo@fraunhofer.cl

Fraunhofer Chile Research - Center for Solar Energy Technologies (CSET)
Bernarda Morin 510
Providencia, Santiago, Chile
https://www.fraunhofer.cl

Annex Additional Pictures

31st SolarPACES Conference

