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Context
Stakes of this work (1/21)

Issue: during cloudy days, the production of
concentrated solar plants is difficult to predict and can be

stopped, which can hinder their ability to satisfy industrial requirements

Objectives:
▶ Prove that solar plants equipped with parabolic trough collectors

can satisfy a heat demand
▶ Prove that predictive control can cope with the intermittency of

solar energy in various scenarios

Stakes: decarbonization of industrial heat production, proof of concept



Context
Stakes of this work (1/21)

Issue: during cloudy days, the production of
concentrated solar plants is difficult to predict and can be

stopped, which can hinder their ability to satisfy industrial requirements

Objectives:
▶ Prove that solar plants equipped with parabolic trough collectors

can satisfy a heat demand
▶ Prove that predictive control can cope with the intermittency of

solar energy in various scenarios

Stakes: decarbonization of industrial heat production, proof of concept



Context
Stakes of this work (1/21)

Issue: during cloudy days, the production of
concentrated solar plants is difficult to predict and can be

stopped, which can hinder their ability to satisfy industrial requirements

Objectives:
▶ Prove that solar plants equipped with parabolic trough collectors

can satisfy a heat demand
▶ Prove that predictive control can cope with the intermittency of

solar energy in various scenarios

Stakes: decarbonization of industrial heat production, proof of concept



Context
Case study (2/21)

Application to a concentrated solar plant equipped with:
▶ 3 parabolic trough solar collectors (150 kW of maximum recoverable power)
▶ a thermocline tank to store energy (1100 kWh of thermal storage)
▶ heat exchangers to transfer thermal energy

A heat transfer fluid (HTF) flows in the plant to transport thermal energy.

Figure: MicroSol-R solar plant.



Context
Description of the controller (3/21)
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Figure: Interactions between the controller and the solar plant (the response of the
plant to the mass flow inputs is simulated).
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Control strategy
MPC strategy (4/21)

Simulation of the behaviour of a system over a given horizon to determine the
control inputs to apply at the current time, and shifting the horizon each time
step:

k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7

t t + ∆t t + 2∆t t + 3∆t t + 4∆t t + 5∆t t + 6∆t t + 7∆t

Horizon n∆t

Applied command

▶ Time step : ∆t = 30 s
▶ Horizon : n∆t = 120 s

These parameters where evaluated to find a compromise between deviation
from the heat demand and execution time.



Control strategy
Solar plant description (5/21)

Tthcl(z)
∀z ∈ J0, nz − 1K

Thermocline
tank

Solar
collectors

Heat
exchangers

Incident
solar
power Pexch

ṁcoll ṁexch

ṁthcl

Texch,out

Texch,in

Tcoll,in

Tcoll,out

Figure: Interactions between the three systems.

Table: Variables description.

Description

ṁcoll Mass flow inside the solar collectors
ṁthcl Upward mass flow inside the thermo-

cline tank
ṁexch Mass flow inside the heat exchangers
Pexch Transferred heat through the heat ex-

changers
DNI Direct Normal Irradiance
Tthcl HTF temperature inside the thermo-

cline tank
Tcoll,in HTF temperature at the inlet of the

solar collectors
Tcoll,out HTF temperature at the outlet of the

solar collectors
Texch,in HTF temperature at the inlet of the

heat exchangers
Texch,out HTF temperature at the outlet of the

heat exchangers

▶ We want to control the exchanged thermal power Pexch
▶ We can act on the mass flows ṁcoll, ṁthcl and the incident solar power

(defocus of the solar collectors)



Control strategy
Optimization problem formulation (6/21)

Objective: satisfy the heat demand Pdemand by modifying the mass flow rate
inside the thermocline tank ṁthcl

min
ṁthcl∈Rn

√√√√n−1∑
i=0

(Pexch(k + i)− Pdemand(k + i))2

s.t. 0 < ṁthcl(k + i) + ṁcoll(k + i) < ṁmax, ∀i ∈ J0, n − 1K

(1)

▶ k: index representing the current time
▶ Optimization algorithm: Sequential Least Square Quadratic Programming

(SLSQP)
▶ Pexch: exchanged power, calculated from a solar plant control model → the

model development is the topic of an article in publication process



Control strategy
Complete control algorithm (7/21)

Algorithm 1: Control algorithm

for k = 0 to N do
Initialization ∀i ∈ J0, n − 1K

Determine ṁcoll(k + i).
Determine ṁthcl(k + i), to be used as optimization initialization.

Optimization ∀i ∈ J0, n − 1K
Compute the exchanged thermal power Pexch(k + i) as a function of
ṁthcl(k + i) with a plant control model..

Outputs the optimized mass flow ṁ∗thcl(k + i).

Simulation
Simulate the plant response to the optimized ṁ∗thcl(k) using a
reference plant model.

end



Control strategy
Complete control algorithm (7/21)

Algorithm 1: Control algorithm

for k = 0 to N do
Initialization ∀i ∈ J0, n − 1K
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reference plant model.

end



Control strategy
Complete control algorithm (7/21)

Algorithm 1: Control algorithm

for k = 0 to N do
Initialization ∀i ∈ J0, n − 1K
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Control performance
Performance criteria (8/21)

Performance criteria:
▶ deviation from the objective:

Edeviation =

N∑
k=0

|Pexch(k)− Pdemand(k)|∆t (2)

▶ maximum overshoot:

overmax = max
k

Pexch(k)− Pdemand(k)
Pdemand(k)

(3)

where:
▶ Pexch: transferred power through the heat exchangers
▶ Pdemand: industrial process heat demand



Control performance
Evaluation scenarios (•◦◦) (9/21)

Simulation on 3 DNI profiles (starts at 9 a.m., ends at 5 p.m.):
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Figure: DNI profiles used as evaluation scenarios: (a) low DNI, (b) highly-varying DNI,
(c) clear sky.



Control performance
Evaluation scenarios (••◦) (10/21)

Simulation on 3 heat demand profiles (starts at 9 a.m., ends at 5 p.m.):

0

20

40 (a)
H

ea
t

de
m

an
d

(k
W

)

0

20

40 (b)

H
ea

t
de

m
an

d
(k
W

)

0 1 2 3 4 5 6 7

0

20

40 (c)

Time (h)

H
ea

t
de

m
an

d
(k
W

)

Figure: Heat demand profiles used as evaluation scenarios: (a) constant demand, (b)
batch demand, (c) slowly-varying modelled industrial demand.



Control performance
Evaluation scenarios (•••) (11/21)

As industrial heat demand data is almost nonexistent, we had to use a model
representing the demand of a paper industry (temperature between 100 ◦C and
500 ◦C) [1]:
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Daily heat demand

Part used in the scenario

Figure: Modelled daily heat demand of a paper industry for medium temperature
processes.

[1] A. Sandhaas et al. “Generation of Industrial Electricity and Heat Demand Profiles for Energy System Analysis”.
In: IAEE conference proceedings (2022).



Control performance
Influence of DNI and heat demand profiles (•◦◦◦◦◦◦◦) — Constant demand (12/21)
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Figure: Results for the first DNI profile.



Control performance
Influence of DNI and heat demand profiles (••◦◦◦◦◦◦) — Constant demand (13/21)

0

500

1,000

D
N

I
(W
m
−
2
)

−0.5
0

0.5

1

M
as

s
flo

w
(k
g
s−
1
) Solar collectors

Thermocline tank

0

10

20

E
xc

ha
ng

ed
po

w
er

(k
W

) Simulation

Heat demand

0 1 2 3 4 5 6 7 8
18

19

20

21

22

Time (h)

E
xc

ha
ng

ed
po

w
er

(k
W

)

Figure: Results for the second DNI profile.



Control performance
Influence of DNI and heat demand profiles (•••◦◦◦◦◦) — Constant demand (14/21)
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Figure: Results for the third DNI profile.



Control performance
Influence of DNI and heat demand profiles (••••◦◦◦◦) — Batch demand (15/21)
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Figure: Results for the first DNI profile.



Control performance
Influence of DNI and heat demand profiles (•••••◦◦◦) — Modelled industrial demand(16/21)
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Figure: Results for the first DNI profile.



Control performance
Influence of DNI and heat demand profiles (••••••◦◦) — Performance (17/21)

Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand (a) (b) (c) (a) (b) (c) (a) (b) (c)

Edev (kWh) 36.95 36.92 65.40 43.32 40.29 54.86 0.79 0.39 1.00
maxoversh (%) 9.63 19.71 6.54 8.60 2.24 9.38 6.24 1.42 5.62

Constant demand:
▶ the heat demand is satisfied when possible, the high deviations are due to a

lack of solar energy.
▶ medium overshoot (when switching from charge to discharge)



Control performance
Influence of DNI and heat demand profiles (•••••••◦) — Performance (18/21)

Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand (a) (b) (c) (a) (b) (c) (a) (b) (c)

Edev (kWh) 36.95 36.92 65.40 43.32 40.29 54.86 0.79 0.39 1.00
maxoversh (%) 9.63 19.71 6.54 8.60 2.24 9.38 6.24 1.42 5.62

Batch demand:
▶ similar energy deviation to the constant demand
▶ low overshoot, except for low DNI



Control performance
Influence of DNI and heat demand profiles (••••••••) — Performance (19/21)

Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand (a) (b) (c) (a) (b) (c) (a) (b) (c)

Edev (kWh) 36.95 36.92 65.40 43.32 40.29 54.86 0.79 0.39 1.00
maxoversh (%) 9.63 19.71 6.54 8.60 2.24 9.38 6.24 1.42 5.62

Slowly-varying modelled demand:
▶ higher deviation due to a slightly higher energy demand
▶ medium overshoot (when switching from charge to discharge)



Outline

Context

Control strategy

Control performance

Conclusion and perspectives



Conclusion and perspectives
(20/21)

Conclusion:
▶ Presentation of a control strategy for concentrated solar plants equipped

with parabolic trough collectors to satisfy a heat demand
▶ Application of this control strategy on 3 DNI profiles and 3 heat demand

profiles
▶ The control algorithm manages to satisfy the heat demands, with little

overshoot. The failure to satisfy the demand are due to a lack of solar
energy.

Perspectives:
▶ Evaluation of the influence of DNI forecast errors
▶ Evaluation of control performance on a industrial-sized plant



Thank you for your attention
Questions ?



Appendix
Full control performance table (21/21)

Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand (a) (b) (c) (a) (b) (c) (a) (b) (c)

Edev (kWh) 36.95 36.92 65.40 43.32 40.29 54.86 0.79 0.39 1.00
maxoversh (%) 9.63 19.71 6.54 8.60 2.24 9.38 6.24 1.42 5.62



Appendix
Evaluation of the MPC time step ∆t and the number of optimized variables n (21/21)
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Figure: Variation of control strategy hyperparameters: ∆t and n. The chosen
hyperparameters are indicated by a red cross.



Appendix
Solar collectors and heat exchangers model (21/21)

Computation of Pexch (considering a fixed outlet temperature Texch,out):

Pexch(k) = (ṁcoll(k) + ṁthcl(k)) · cf · (Texch,in(k)− Texch,out(k)) (4)

Existing model of solar collectors, fast and accurate enough to be used in the
objective function [2]:

cf
∂Tcoll
∂t

= q̇f,adv + q̇f,diff + q̇conv,f↔abs

cabs
∂Tabs
∂t

= q̇abs,diff + q̇conv,abs↔f + q̇cond,abs↔ext + q̇ray,abs↔v + q̇abs,sol

cv
∂Tv
∂t
= q̇v,diff + q̇conv,v↔ext + q̇v,sol + q̇ray,v↔abs + q̇ray,v↔ext

[2] T. Fasquelle et al. “A Thermal Model to Predict the Dynamic Performances of Parabolic Trough Lines”. In:
Energy 141 (Dec. 15, 2017).



Appendix
Thermocline tank model (21/21)

A thermocline tank model has been developped by Hoffmann [3]. This model
describes the interactions between the heat transfer fluid, the solid particles and
the tank’s wall. It is used for the simulation step:

3-phase model:



cf
∂Tthcl
∂t

= q̇f,adv + q̇f,diff + q̇conv,f↔sp + q̇conv,f↔w

csp
∂Tsp
∂t
= q̇sp,diff + q̇conv,sp↔f

cw
∂Tw
∂t
= q̇w,diff + q̇conv,w↔f + q̇conv,w↔ext

(6a)

(6b)

(6c)

A simplified model is used in to compute the objective function:

Single-phase model:
(
cf +

ρsp
ρf
csp

)
∂Tthcl
∂t

= q̇f,adv (7)

[3] J. F. Hoffmann et al. “A Thermocline Thermal Energy Storage System with Filler Materials for Concentrated
Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales”. In:
Applied Thermal Engineering 100 (May 5, 2016).



Appendix
Control of the solar collectors (21/21)

Estimation of the mass flow inside the solar collectors to reach a fixed outlet
temperature Tcoll,out = 300 ◦C:

ρfVcollcf
dTcoll,out

dt
= DNI(t)ηcollAcoll(1−ηdefocus)−ṁcoll(t)cf(Tcoll,out(t)−Tcoll,in(t)) (8)

Acoll: solar collecting area
Vcoll: HTF volume in the solar collectors
ηdefocus: defocus of the solar collectors (0 < ηdefocus < 1)
ηcoll: solar collectors efficiency
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