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Stakes of this work (1/21)

Issue: during cloudy days, the production of
concentrated solar plants is difficult to predict and can be
stopped, which can hinder their ability to satisfy industrial requirements
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Objectives:

> Prove that solar plants equipped with parabolic trough collectors

can satisfy a heat demand

» Prove that predictive control can cope with the intermittency of

solar energy in various scenarios
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it Issue: during cloudy days, the production of
' concentrated solar plants is difficult to predict and can be
stopped, which can hinder their ability to satisfy industrial requirements

J

Objectives:

i

> Prove that solar plants equipped with parabolic trough collectors
can satisfy a heat demand

» Prove that predictive control can cope with the intermittency of
solar energy in various scenarios

|

Stakes: decarbonization of industrial heat production, proof of concept




Context
Case study

Application to a concentrated solar plant equipped with:
» 3 parabolic trough solar collectors (150 kW of maximum recoverable power)
» a thermocline tank to store energy (1100 kWh of thermal storage)
» heat exchangers to transfer thermal energy

A heat transfer fluid (HTF) flows in the plant to transport thermal energy.

Figure: MicroSol-R solar plant.
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Description of the controller (3/21)

Controller Solar plant
(simulated)
Temperatures,

mass flow rates
Sensors

Mass flow rates

inputs - Solar collectors

PR Thermal PR

~ 7 storage ~ 7

N Y
Heat exchangers

Figure: Interactions between the controller and the solar plant (the response of the
plant to the mass flow inputs is simulated).
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Figure: Interactions between the controller and the solar plant (the response of the
plant to the mass flow inputs is simulated).
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MPC strategy

(4/21)

Simulation of the behaviour of a system over a given horizon to determine the
control inputs to apply at the current time, and shifting the horizon each time

B
T s

step:
= [ Horizon nAt
EZZ Applied command
! 1 1 1 1 1 1 ]
r T T T T T T 1
k k+1 k+2 k+3 k+4 k+5 k+6 k+7
t t+ At  t+2At t+3At t+4At t+5At t+6At t+TAt

» Time step : At =30s
» Horizon : nAt = 120s

These parameters where evaluated to find a compromise between deviation
from the heat demand and execution time.




Control strategy == @

Solar plant description

Table: Variables description.

Mol Mexch
Myl Description
Tcoll,out Texch.in
Meoll Mass flow inside the solar collectors
. Mipel Upward mass flow inside the thermo-
Incident cline tank
solar P Mexch Mass flow inside the heat exchangers
power Solar Heat exch Pexch Transferred heat through the heat ex-
collectors exchangers changers
DNI Direct Normal Irradiance
Tthel HTF temperature inside the thermo-
cline tank
Teoll,in HTF temperature at the inlet of the
Teoll,in Texch,out solar collectors
Teollout ~ HTF temperature at the outlet of the

solar collectors

Texch,in HTF temperature at the inlet of the
heat exchangers

Texchout HTF temperature at the outlet of the
heat exchangers

Figure: Interactions between the three systems.

» \We want to control the exchanged thermal power Pexch

» \We can act on the mass flows ron, rna and the incident solar power
(defocus of the solar collectors)
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Optimization problem formulation (6/21)

Objective: satisfy the heat demand Pyemand by modifying the mass flow rate
inside the thermocline tank mMminc

n—1

min Z(Pexch(k+i)_ Pdemand(k+i))2
i=0

Mghe €R?
st. 0< mthd(k + I) + mcou(k + I) < Mmax, Vi € [[O, n— 1]]

» k: index representing the current time

» Optimization algorithm: Sequential Least Square Quadratic Programming
(SLSQP)

» Puch: exchanged power, calculated from a solar plant control model — the
model development is the topic of an article in publication process
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f Complete control algorithm (7/21)

~
<

Algorithm 1: Control algorithm

for k =0to N do

Initialization Vi € [0, n — 1]

Determine meon(k + 1).

Determine mnq(k + i), to be used as optimization initialization.

e

3
3
:
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Complete control algorithm (7/21)

[

Algorithm 1: Control algorithm

for k =0to N do

Initialization Vi € [0, n — 1]

Determine meon(k + 1).

Determine mnq(k + i), to be used as optimization initialization.

I

Optimization Vi € [0, n — 1]

- Compute the exchanged thermal power Pexch(k + i) as a function of
: 1 ehel(k + 1) with a plant control model..

; Outputs the optimized mass flow mj.q(k + 1).

end
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Complete control algorithm

(7/21)

Algorithm 1: Control algorithm

for k =0to N do
Initialization Vi € [0, n — 1]

end

(%)

Determine meon(k + 1).
Determine mnq(k + i), to be used as optimization initialization.

Optimization Vi € [0, n — 1]

Compute the exchanged thermal power Pexch(k + i) as a function of
ehel(k + 1) with a plant control model..
Outputs the optimized mass flow mj.q(k + 1).

imulation
Simulate the plant response to the optimized my, (k) using a
reference plant model.
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Control performance
Performance criteria

Performance criteria:

» deviation from the objective:

N
Edeviation = Z |Pexch(k) - Pdemand(k)|At
k=0

» maximum overshoot:

Pexch(k) - Pdemand(k)
Pdemand(k)

OVeImax = mEX

where:
» Puch: transferred power through the heat exchangers
P Piemand: industrial process heat demand
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Evaluation scenarios (e00) (9/21)

Simulation on 3 DNI profiles (starts at 9 a.m., ends at 5 p.m.):
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Figure: DNI profiles used as evaluation scenarios: (a) low DNI, (b) highly-varying DNI,
Z (c) clear sky.
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Simulation on 3 heat demand profiles (starts at 9 a.m., ends at 5 p.m.):
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Figure: Heat demand profiles used as evaluation scenarios: (a) constant demand, (b)
batch demand, (c) slowly-varying modelled industrial demand.
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7> As industrial heat demand data is almost nonexistent, we had to use a model

representing the demand of a paper industry (temperature between 100 °C and
[/ 500°C) [1]:

T
——  Daily heat demand

Part used in the scenario

N
o

Heat demand (kW)

=
o

| | | | | | | | | | |
0 2 4 6 8 10 12 14 16 18 20 22

Time of day (h)

Figure: Modelled daily heat demand of a paper industry for medium temperature
processes.

[1] A. Sandhaas et al. “Generation of Industrial Electricity and Heat Demand Profiles for Energy System Analysis”.
In: IAEE conference proceedings (2022).
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Influence of DNI and heat demand profiles (e#00coco) — Constant demand (13/21)
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Figure: Results for the second DNI profile.




Control performance

Influence of DNI and heat demand profiles (e#e@00000) — Constant demand (14/21)
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Figure: Results for the third DNI profile.
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Influence of DNI and heat demand profiles (ee@00000) — Modelled industrial demand(16/21)
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? Influence of DNI and heat demand profiles (eee00000) — Performance (17/21)

Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand @ B (© (@ b ( (@ (b (9
Egev (KWh) 36.95 43.32 0.79

MaXoversh (%) 9.63 8.60 6.24

Constant demand:

» the heat demand is satisfied when possible, the high deviations are due to a
lack of solar energy.

» medium overshoot (when switching from charge to discharge)
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Table: Control performance in different scenarios ((a) constant demand, (b) batch

demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand (@ by (@@ @ (b (© @ ® (©
Edev (KWh) 36.92 40.29 0.39
MaXoyersh (%) 19.71 2.24 1.42

Batch demand:

» similar energy deviation to the constant demand

» low overshoot, except for low DNI
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? Influence of DNI and heat demand profiles (eee00000) — Performance (19/21)

Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky

Demand (@ k) (@© @ b ( (@ ® (
Edev (KWh) 65.40 54.86 1.00
MaXoversh (%) 6.54 9.38 5.62

Slowly-varying modelled demand:
» higher deviation due to a slightly higher energy demand

» medium overshoot (when switching from charge to discharge)
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? (20/21)

Conclusion:

» Presentation of a control strategy for concentrated solar plants equipped
with parabolic trough collectors to satisfy a heat demand

» Application of this control strategy on 3 DNI profiles and 3 heat demand
profiles

» The control algorithm manages to satisfy the heat demands, with little
overshoot. The failure to satisfy the demand are due to a lack of solar
energy.

Perspectives:
» Evaluation of the influence of DNI forecast errors

» Evaluation of control performance on a industrial-sized plant
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Table: Control performance in different scenarios ((a) constant demand, (b) batch
demand, (c) slowly-varying modelled demand).

DNI Low DNI Highly-varying DNI Clear sky
Demand @ b (© (@ G (¢ (@ (b)) (9

Egev (KWh)  36.95 36.92 65.40 43.32 40.29 54.86 0.79 0.39 1.00
Maxoversh (%) 9.63 19.71 6.54 8.60 224 9.38 6.24 1.42 562
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Evaluation of the MPC time step At and the number of optimized variables n

(a) Deviation from the objective (kWh) (b) Maximum overshoot (%)
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Figure: Variation of control strategy hyperparameters: At and n. The chosen
hyperparameters are indicated by a red cross.
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? Solar collectors and heat exchangers model (21/21)
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Computation of Pech (considering a fixed outlet temperature Texch,out):

', : Pexch(k) = (mcoll(k) + mthcl(k)) s Cf (Texch,in(k) - Texch,out(k)) (4)

7 |

Existing model of solar collectors, fast and accurate enough to be used in the
objective function [2]:

El 87—coII _ . . .

= gy = dradv =+ Gr.diff + Qeonv,ferabs

A 87—abs . . . . .

2 Cabs? = (abs,diff + Geonv,absesf + Jeond,absesext + Gray,abscsv + Gabs,sol

oT, . . . . .
Cvaitv = Qv diff + Qeonv,vérext + Qv,sol + Qray,v<>abs + Qray,vesext

\‘_,,,.--ﬂ

=
1

£ [2] T. Fasquelle et al. “A Thermal Model to Predict the Dynamic Performances of Parabolic Trough Lines”. In:

5
g Energy 141 (Dec. 15, 2017).
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Thermocline tank model (21/21)

A thermocline tank model has been developped by Hoffmann [3]. This model

describes the interactions between the heat transfer fluid, the solid particles and
the tank’s wall. It is used for the simulation step:
oT: . . . .
_‘5_ Cr at:d = {f,adv + qr diff + qconv,f<—>sp + Qeonv,fow (63)
1 aT. _ :
3_phase model: CspT;p = Qsp,diff + Gconv,spesf (6b)
oT, . . .
Cwait‘_/v = Qw,diff + Qeonv,wf + Qconv,wrext (6C)
A simplified model is used in to compute the objective function:
. oTq
Single-phase model: <c + ?Csp) atthd = Gradv (7)

[3] J. F. Hoffmann et al. “A Thermocline Thermal Energy Storage System with Filler Materials for Concentrated
Solar Power Plants: Experimental Data and Numerical Model Sensitivity to Different Experimental Tank Scales”. In:
Applied Thermal Engineering 100 (May 5, 2016).




Appendix

Control of the solar collectors

Estimation of the mass flow inside the solar collectors to reach a fixed outlet
temperature Teolout = 300°C:

dT, .
pf%ollQ’% = DNI(t)ncoIIAcoll(1_77defocus)_mcoll(t)cf(TcoII,out(t)_Tcoll,in(t)) (8)

Acoll: solar collecting area

Veol: HTF volume in the solar collectors

Tdefocus: defocus of the solar collectors (0 < Myefocus < 1)
Neoll: Solar collectors efficiency
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