SolarDynamics

Flexible Hose Interconnect Testing for Parabolic Troughs with Nitrate Salt

Ryan Shininger¹, Kyle Kattke¹, Mark Anderson², Francisco Ortiz Vives³, Mirko Saur³, Matthew Boyd⁴, and Hank Price¹

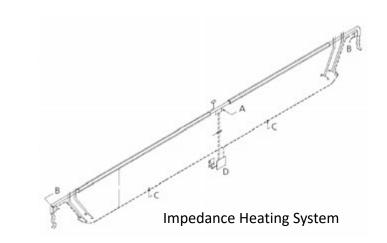
¹ Solar Dynamics LLC, 1105 W 11th Ct, Broomfield, CO 80020, USA
 ² Madison Scientific LLC, 2812 Lalor Rd, Oregon, WI 53575, USA
 ³ Senior Flexonics GmbH, Frankfurter Straße 199, 34121 Kassel, Germany
 ⁴ National Renewable Energy Laboratory, 15013 Denver W Pkwy, Golden, CO 80401, USA

SolarPACES 2019 EXCO Conference Center, Daegu, South Korea October 4th, 2019

All Materials Copyright © 2019 Solar Dynamics Not to be redistributed or published without prior written permission

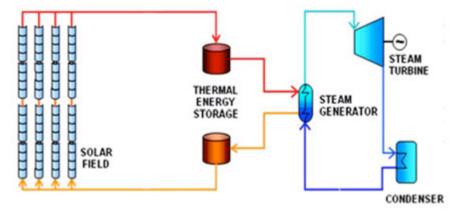
- I. Project Overview
- II. Interconnect Benchmarking for Parabolic Troughs with Molten Salt
- III. Flex Hose Mechanical Testing
- IV. System Advisor Model ("SAM") Updates for Molten Salt Troughs

I. Project Overview


SolarDynamics

SMART Molten Salt Trough Project: <u>Simplified Melting And Rotation-joint Technology</u> for Molten Salt Troughs

Funded by U.S. Department of Energy, Solar Dynamics, and others Project DE-EE0008140



Collector Molten-Salt Interconnection

Design, Performance, and Cost Models

Why Molten Salt Troughs?

- Same operational benefits as Molten Salt Towers
 - Higher temperature \rightarrow higher Rankine cycle efficiency
 - Heat transfer fluid and storage medium become one and the same (eliminates HX)
 - Higher energy density \rightarrow smaller storage volume \rightarrow lower cost storage
 - Flexible dispatch, de-coupled from energy collection
- Lower profile than Molten Salt Towers (easier siting and permitting)
 - Less visual impact
 - No bird issues or perception thereof
- Challenges:
 - High freeze temperature & high cost of freeze protection
 - Lack of reliable interconnect solutions
 - Limitation of publicly available modeling tools

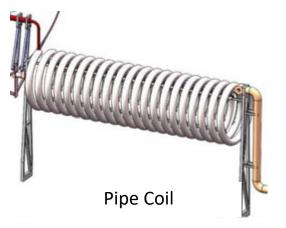
Presentation covers these topics

So What's New?

- The prospect of using Molten Salt as an HTF medium is not a new concept
 - Many studies have been made
 - Many tests have been conducted, even full collector loops
- Despite the work that has been done, little information exists publicly, particularly physical tests and demonstrations
 - A primary goal of this project is to publicly disseminate information for the benefit of the industry
 - This presentation covers a couple recent success stories
 - Any failures in the future will also be shared for the benefit of the industry

II. Interconnect Benchmarking for Parabolic Troughs with Molten Salt

SolarDynamics

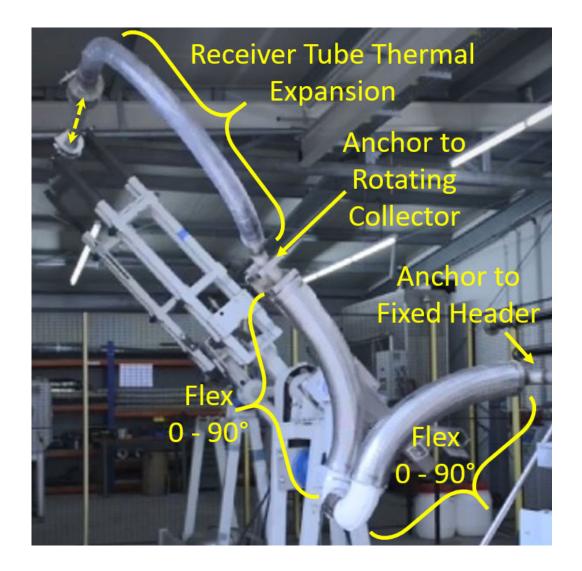

- Ball joints and rotation joints
 - Most commonly used in oil HTF plants
 - Poor lab test history with MS (Abengoa and others)
 - New packing and sealing materials may present opportunity
- Flexible hoses ("flex hoses")
 - Commonly used in oil HTF plants
 - Prior lab tests with MS have had limited but promising results (Abengoa and others)
 - Solar Dynamics has conducted further lab testing
- Pipe coil or "Flexible Rotary Pipe Coupler"
 - Demonstrated in Lab
 - No known commercial deployments
 - Consumes more real estate
 - System analysis indicates higher pumping parasitics, greater thermal losses → higher LCOE

Flexible Hose

Prior Lab Testing (Abengoa & University of Wisconsin-Madison)

SolarDynamics

RTME **Engineering Physics** College of Engineering University of Wisconsin-Madison


• Most Successful Test Result:

- Salt: 60% NaNO₃ 40% KNO₃
- Temperature
 - 500°C
- Pressure
 - 25 bar (363 psi)
- 6470 cycles completed before shutting down test without flex hose failure – represents approximately 18 years of operating life

Key Findings from Prior Flex Hose Testing

- A design life exceeding 10 years seems achievable
- Limiting the degrees of bending of each flex hose extends the life
- Effects of fatigue can be reduced by limiting the motion of each flex hose to bend in only one direction
- Senior Flexonics has designed a triple hose configuration that requires no rotational joint and limits the degree of bending of each hose to less than 90°

Senior Flexonics TripleFlex Design

SolarDynamics

Copyright © 2019 Solar Dynamics. Not to be redistributed or published without prior written permission

III. Flex Hose Mechanical Testing by Solar Dynamics

- Can the design withstand the combination of temperature, pressure, and mechanical cycling needed for commercial service?
- Goal: complete accelerated cycle testing to demonstrate <u>10 years</u> of mechanical life at process condition extremities
- Two prototypes were tested with molten salt at temperatures and pressures representing loop inlet and loop outlet conditions.

New hose upon shipment

Initial Salt Filling

Impedance heating to 550 °C

Cycling under temp. & press.

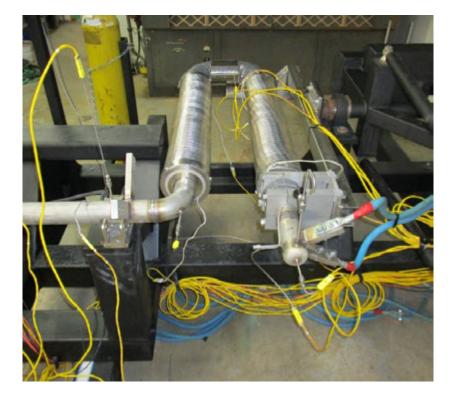
Video of Interconnect Testing

SolarDynamics

Copyright © 2019 Solar Dynamics. Not to be redistributed or published without prior written permission

Solar Dynamics Testing with University of Wisconsin-Madison

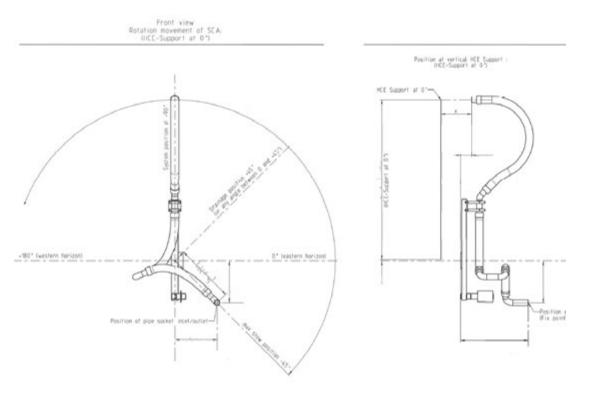
- Prototypes were cycle tested with molten salt
- Goal: complete accelerated cycle testing to demonstrate <u>10 years</u> of mechanical life at process condition extremities


SolarDynamics

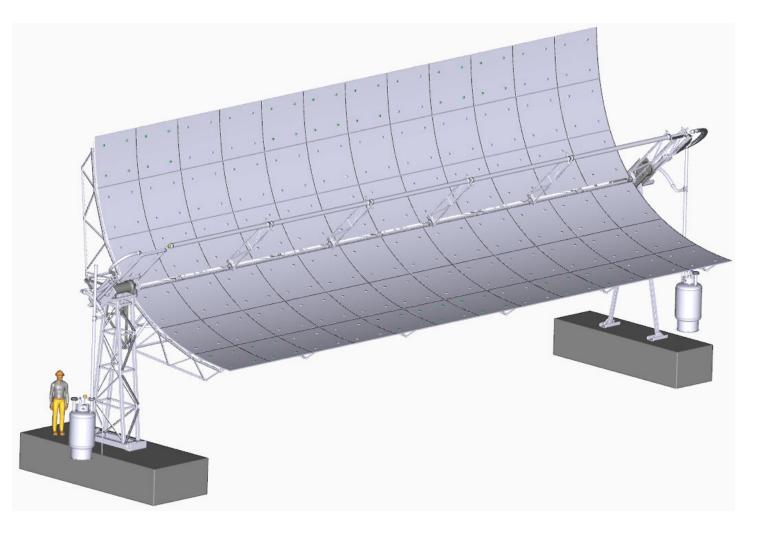
College of Engineering

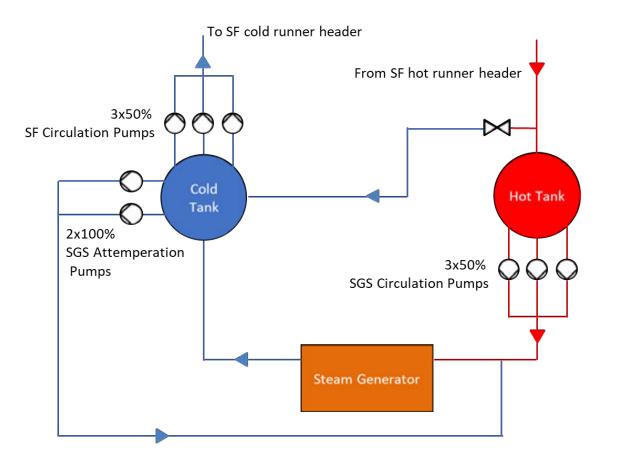
University of Wisconsin-Madison

- Test Results:
 - Loop Outlet Conditions
 - 550 °C, 14.0 bar
 - 11,440 cycles completed, representing 30+ years without any failure
 - Loop Inlet Conditions
 - 305 °C, 31.5 bar
 - 10,200 cycles completed when leak occurred, <u>representing 28+ years</u>



Limitations of Test Results


- Mechanical fatigue testing only
- Does not account for factors including:
 - Daily temperature and pressure cycling
 - Oxidation / stress-corrosion cracking
 - Ambient weather conditions
 - 30 years of actual life in the field
- Nonetheless, the test results are promising, presenting a compelling interconnect solution for parabolic troughs with molten salt


Next Steps in Testing

- Single Module Test Site
 - Being constructed in late 2019
 - Freeze protection testing with impedance heating
 - Freeze / thaw component testing
 - Using concentrated solar to augment freeze protection and freeze recovery
 - Uses Solar Dynamics 8.2 m aperture x
 20 m length SunBeam[™] collector

IV. System Advisor Model ("SAM") Updates

- NREL modified the Physical Trough Model in SAM
 - Publicly available with SAM release v2018.11.11
- Peaker configuration option (distinct collection and generation flow loops)
 - Solar field piping design now saved in user accessible outputs
 - Allows sizing of heat trace and integration to overall piping cost model
 - Custom solar field pipe diameter option
 - Allows user to optimize each pipe section
 - User defined interconnects
 - Allows simulation with flex hose, Brayton Coil, and future designs

SolarDynamics

Thank you for your attention!

Ryan Shininger, P.E. Ryan.Shininger@SolarDynLLC.com (720) 308-0744