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‘.'_“7. SOLAR THERMOCHEMISTRY CONTEXT

* Chemistry: Making and breaking bonds

* Thermochemistry combines the concepts of thermodynamics with the idea of energy
in the form of chemical bonds.

* Thermochemistry is a branch of thermodynamics that is the study of heat generated
(exotherm) or consumed (endotherm) in a chemical reaction.

* Solar: Source of heat particularly to promote the endothermic reactions
Heat can also accelerate reactions even if exothermic
High temperature can be sustainable when enabled by solar fuels or concentrated solar

* Deep Decarbonization: Applications to a large range of carbon-intensive sectors
* Dispatchability: Enable deeper penetration of renewables with less curtailment
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SOME (MANY) APPI.ICATIONS OF SOLAR THERMOCHEMISTRY

Carbon Dioxide Splitting

Gasification

with CH,

Separation

acmalon

Reduction

De-Hydration

De-Carboxylation

Heat for power cycles (air Hydrogen (H,), Carbon Monoxide (CO), Metals (Fe, Al, Zn, Cu, Li)
Brayton or sCO, Brayton) or Syngas (H,/CO/CO, mix) Steel, Cement, lime,

other high temperature Methanol (CH;0H), DME (O=(CH,),), Pure Nitrogen (N,), Pure
industrial processes Diesel, Jet Fuel, NH,, Co-produce H,/ e Oxygen (O,), Ammonia (NH,)
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'~ Redox: Oxygen Shuttle
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KEY RISKS OFTEN OVERLOOKED EARLY IN THE
DEVELOPMENT PROCESS

Having a good technical risk assessment and review formalism

* |dentifying all the possible failure modes — what would keep the material, the functional components,
interfaces, or the system from working as intended?

Risk
Detection| Priority Recommended
(1-10) | Number Actions
(RPN)

e : . Potential Current Design
Potential Failure | Potential Effect(s) |Severity Occurrence &

Mechanism(Causes)
of Failure Mode

Features/

mode of Failure (1-10) Controls

(1-10)

» The FMEA (Failure Mode Effects & Analysis) is a collaborative exercise and works best with a diverse team
* (Can be effective at identifying and mitigating or eliminating risks
* Applies broadly, e.g., to design of functional materials, components, interfaces, and the full system

* Early on — sufficient to drive the RPN = Severity x Occurrence x Detectability < 100
SETO NOVEMBER 2020 | UNLOCKING THERMOCHEMICAL POTENTIAL | ASU LIGHTWORKS® | ELLEN B STECHEL 5



A RIZONA STATE UNIVERSITY

FISHBONE DIAGRAM CAN AlID IN ASSESSING RISKS

Measurement Methods Uit N6l LEED 12
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—— design Problem
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acceptance Very important that
the problem or goal
is well posed

Sensitivity

Mother Nature Manpower
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VERY IMPORTANT RISK IS GETTING THE SCALE RIGHT

Solar vs. Nuclear capacity built per decade
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Adaptability

Faster Learning
Less Investor Risk

Start generating
revenue more
quickly

Matching scale with
downstream
processing, e.g.,
syngas — jet fuel
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RISK OF NOT OPTIMIZING FOR THE THERMODYNAMICS BECAUSE
OF HIGH TEMPERATURE

Challenging but not necessarily a show-stopper: Know the difference between an engineering
challenge that might have analogs in other applications and show-stoppers

High Temperature Industrial Processes Low | B [ High

Temperature

Fusing quartz under H,/0, flame: T~1700°C

Jet turbine inlet temperature: ~1600°C
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REGIONS WITH AN EXCELLENT SOLAR RESOURCE STILL MUST COPE
WITH SUBSTANTIAL VARIABILITY
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* Must consider the impact of the
variability

* Determine performance off design
point

* Might have both supply and
demand variability (as with
electricity).

 There may be consequences for
downstream (off-sun) processes to
consider
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COST DRIVERS ARE TECHNICAL METRICS IMPORTANT AT ALL
PHASES OF DEVELOPMENT

 Total Project Investment or CAPEX: Cx ($/kW) Power Density: kW/L

« Capacity Factor: CF (Between 0 and 1) Measure of compactness
* Energy Utilization: eU (kWh/kg) oc 1/Efficiency
* Cost of energy plus variable O&M: Ce $/kWh Balancing solar constraints

* Annualized cost factor (financial plus fixed O&M): cr f (ir) and balance of system —
Y won’t necessarily eliminate

cost of energy

3 U x Cx X crf L
kGproduct CF x 8760 hr/yr g/i'tag'e?"t MEHER U @ (CF
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INLET TEMPERATURE ON JET ENGINES CONTINUOUSLY INCREASING
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The evolution of allowable
gas temperature at the
entry to the gas turbine
and the contribution of
superalloy development,
film cooling technology,
thermal barrier coatings
and (in the future)
ceramic matrix composite
(CMC) air foils and
perhaps novel cooling
concepts.
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