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Why sodium?

IN

Sodium is an attractive heat transfer fluid for several reasons:
» Liquid phase over a large temperature range (98-881°C)

» Outstanding thermal conductivity (64.2 Wm-1K-1 at 700°C)

» Extensive experience at scale, via the nuclear industry

For CSP, sodium benefits solar receiver performance and is an
enabler of plant modularity

It could allow heat transport into the core of industrial processes

However for energy storage there are certain drawbacks of sodium
» Moderate specific heat capacity (1.26 kJkg-K-1 at 700°C)
» Higher cost than alternative bulk storage materials (~$3 USD/kg)

» Itis a flammable material, hence minimising inventory is preferable

Sodium is best used in concert with other storage mediums
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Molten salt storage with sodium HTF

Sodium can be coupled to molten salt storage

» Nitrate salt, ~ 565°C, e.g. Vast Solar

» Chloride salt, ~ 700°C, e.g. Gen3 Liquids, TerraPower
» Incorporates a sodium-salt heat exchanger

Pros and cons

Sodium-to-Salt

HEX and Sodium

[/l The configuration is as close as is possible to conventional alt | AP S WL
CSP plants, which are deployed at scale

I The Gen3 Liquids Pathway project found this configuration
has promising LCOE of 58.4 USD/MWh,, (Turchi, 2021)

[XIThere is added complexity and cost in managing two
different fluids (pumps, purification systems, etc.)

Image: NREL
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Other storage options
with sodium

* Several alternative sodium-compatible thermal storage
options are being developed/commercialised

* Sensible energy storage in solid material e.g. graphite
(Graphite Energy)

* Latent energy storage in phase change materials e.g.
carbonate & chloride salts (UniSA), Al & Al-Si (Azelio)

« Combined sensible/latent energy storage, i.e. a PCM
embedded in a solid matrix material, e.g. Al in graphite (MGA
Thermal)

Images: ANU
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Azelio PCM storage uni with aluminium and sodium
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MGA Thermal miscibility gap alloy
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Packed bed thermal energy storage concept

Sodium is in direct contact with a solid material in

what is known as a packed bed thermocline.
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Charging
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Other work on packed bed thermoclines

(o]

Packed bed thermocline storage systems are most frequently
studied in a configuration with natural rock beds and air (e.g.
Allen et al. 2014; Fricker 1991)

Other material combinations have been tested, such as solar

salt and ceramic materials like quartzite, silica and basalt (e.g.

Pacheco et al. 2002; Klasing et al. 2020).

Direct contact between sodium and solid materials has been
proposed previously (Niedermeier et al. 2018)

Tightly packed bed storage concepts have been tested in air-
ceramic storage systems, such as at the Julich Solar Power
Tower (Zunft et al. 2011).

Nested hexagonal structures (cast iron clad with stainless
steel) have been suggested in combination with sodium
(Forsberg 2021).
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Choice of material

©

Magnesia (MgO) was down selected for
experimental investigation over several other
filler materials of interest (Al,O3, pig iron)

Based on FactSage modelling, MgO was
predicted to have good thermodynamic
stability in sodium at 750°C

Samples of ~97% purity commercial grade
magnesia bricks were sourced from several
different bulk manufacturers

The remaining ~3% is predominately SiO,,
CaO and Fe,O4 based on the manufacturer
data sheets.

Samples were cut from the bricks and
immersed in sodium at 750°C for a 500 hour
period.

Although a colour change was observed, x-ray
diffraction analysis indicated that the main
crystalline phase (MgO) was unchanged
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CFD modelling

» Computational fluid dynamics (CFD) modelling has
examined the effect of brick size and orientation on
pressure drop

» Experimental results from testing of a thermocline
storage tank using a packed bed of quartzite, silica 3 S s b Uuooos
sand and molten salt, were used for model i3t uouooo
validation (Pacheco, 2002)

+ Significantly lower pressure drop was found for the
brick structure than for a randomly packed bed filled
with sand and small pebbles, even with very small _ - B
gaps and a liquid fraction as low as 2%. Spatial temperature distribution, changing with time.

» Having smaller bricks significantly improves thermal
utilisation, hence there is a tradeoff between cost
and complexity

energy recovered in discharge

thermal utilisation = -
maximum energy that could be extracted
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Annual system modelling

* Annual system modelling has been carried out in SolarTherm

« Use of a simplified heat-transfer model that is discretised in 1D
in the direction of the fluid flow, and where the filler elements
are represented by spheres discretised in 1D radially.

» This model has been used to compare single tank and multi-
tank configurations.

« For multi-tank configurations, it was found that the operating
strategy is critical to performance.

« For example, when a storage tank nears the end of its
discharge phase, it is beneficial to blend in hotter fluid from a
second, fully charged tank to boost the overall outlet
temperature, and keep the power block in operation for a
longer period.
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Techno economic analysis

« Technoeconomic modelling has been carried out for the single tank
configuration

» Based on MgO bricks at 1 USD/kg

» Tank costs including stainless steel 316L at 4 USD/kg based on Gen3 CSP
Liquids Pathway chloride salt tank (Turchi et al. 2021)

» Sodium inventory at 3 USD/kg.

» A reduced-order (or surrogate) model for the storage was developed,
introducing ~2% error, however with speedup of 40x.

« The result of the system optimisation and technoeconomic analysis is
that a system based on the packed bed storage concept achieves
levelised cost of energy (LCOE) of 56.55 USD/MWh,

» Further reduction of LCOE is expected once simulation of multi-tank
packed bed storage configurations is completed.
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Prototype design

Key factors considered
» Potential for high thermal losses at laboratory scale

* Need to withstand vacuum (specific to operation of the ANU
sodium lab)

+ Dense temperature instrumentation to characterise performance
» Differences in thermal expansion between the tank and the bricks
* Uncertain geometric tolerances from the brick manufacturer

Location of the
prototype unit
during testing

(@) "_,(b")'

Packed bed storage prototype sh,GW-ing.-(é) the".outer shell
and (b) a cross-section.view of-the pricks,.
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Detailed design

Detailed design including FEA modelling was
carried out with support from FE Consulting

Design details include:

+ Aframe

* Instrumentation (51 thermocouples)
* Internal catch tray

» Brick spacers

+ Thermal ‘break’ to the support frame

5, Mises

Envelope (max abs)

{Avg: 75%)
108.000
99.001
90.002
81.003
72.004
63 005

4—5 OD?
36.008

s, Mises

Envelope (max abs)

(Aug: 75%)
163.500

* Insulation (microporous ceramic boards) FEA modelling of the tank under des‘i.g'-n
loads (left) and full vacuum (right).__.-"

Vessel material Stainless Steel 316
Expected cycles in service 50 cycles
Shell temperature at full vacuum 200°C
Liquid content Sodium
CAD model of the full Filler material Mgo
prototype assembly (left) Fllle_r mate_rlal density 3580 kg/m3
and spacers (above) Max!mum internal pressure 35 kPa.g .
Maximum external pressure F.V (shortterm < 1hr) @ Max 200°C
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Fabrication

» Tank fabrication was carried
out by DME Engineering
Services

* ANU cut the bricks and
placed them in the tank.

« DME welded on the last side
of the tank.

» Scheduling of the testing in
ANU’s sodium loop is still to
be determined

Bricks stacked Bricks stacked in the tanks, Finished prototype paq_K'éd _b'"ed

up, with spacers, with spacers, prior to the storage (excluding insulatjon)
prior to cutting. door being welded on
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Conclusions

» The packed bed storage concept builds upon prior modelling and experimental work in the CSP
community with packed beds, such as ceramic or rock beds with air and salt.

« A material compatible with sodium (MgO) at high temperature has been identified and tested for a duration
of 500 h in contact with sodium at 750°C without any significant structural or chemical degradation.

* Annual simulations and technoeconomic analysis show promising LCOE at 56.55 USD/MWh_
« Alaboratory-scale prototype has been fabricated, ready for testing in the ANU sodium lab
» Key benefits of this concept are

> the filler material is already produced at commercial quantities at low cost;

» the total tank volume is less than for a conventional ‘two-tank’ molten salt storage system;

» the need for a second heat transfer fluid (i.e. the molten salt) with heat exchangers is avoided, simplifying the deS|gn
operation, and maintenance;

» the liquid fraction of sodium (i.e. sodium inventory in the tank) can be kept below 5%, reducing costs and hazards
associated with storing large amounts of sodium. ; ;
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