

Techno-economic Analysis of a High-Temperature Concentrated Solar Power Plant with a Multi-Level Storage System for a Year-Round Guaranteed Dispatchability Ayse Parlak¹, <u>Alberto de la Calle²</u>, Arindam Dasgupta¹

and Ellen B. Stechel²

¹Siemens Corporation, Corporate Technology, USA

²ASU LightWorks[®], Arizona State University, Tempe AZ, USA

SolarPACES 2022

Albuquerque, September 29, 2022

Introduction

Although there are many technologies that cover **short-term** (daily) energy storage to stabilize the grid, only a few covers **mediumterm** (weekly) and **long-term** (seasonal) energy storage and are not yet sufficiently developed

Weekly and seasonal storage provides a yearround guaranteed dispatchability

Daggett CA

CSP with multi-level storage system

This system offers a **unique flexibility**, where we can **buy and sell electricity** when it is most convenient and is allowed to **sell Hydrogen** as a commodity to offset the operational and capital costs

Level 1 (Daily): Sensible heat Level 2 (Weekly): Thermochemical heat Level 3 (Seasonal): Hydrogen

SolarPACES 2022

Albuquerque, September 29, 2022

System design: Next-generation CSP

Gen3 plant based: combines a free-falling particle receiver and a supercritical CO₂ power block

4

System design: Thermochemical energy storage

Arizona State University

System design: Thermochemical energy storage

System design: Thermochemical energy storage

SolarPACES 2022

Arizona State University

Albuquerque, September 29, 2022

System design: Full plant diagram

SolarPACES 2022

Albuquerque, September 29, 2022

ASU LIGHTWORKS®

8

9

System modeling: next generation CSP

Arizona State University

Results: next generation CSP

Best solution for each receiver configuration as function of solar multiple: LCOH and annual efficiency (Daggett CA)

Design parameters

- Receiver configuration
- Receiver width (5-30 m step 1 m)
- Tower height (100-400 m step 5 m)

Optimization

- Optimization algorithm: *surrogateopt*
- Objective function: cost-heat flow ratio

 $R3_{90}$ exhibits the lowest LCOH for all the SMs assessed, LCOH ~\$11/MWh between SM: 1-3

ASU LIGHTWORKS®

North

R3₁₂₀

R3₉₀

R1

System modeling: multi-level energy storage

Tri-Level Storage Enabled Dispatchable CSP System Design Software

Arizona State University

Results-II

100

80

60 40

20

1000

- User friendly simulation platform to simulate multi-level energy storage systems
- It is constructed using mixed-integer linear programming (MILP) formulation
- Includes constraints and objective functions
- Uses reduced order models and cost model of each of the subsystems

This tool can calculate the optimal system operation given a scenario to achieve the minimum levelized cost of energy

SolarPACES 2022

Albuquerque, September 29, 2022

Power Generation - Period 1 - 12

1500

2000

LCOE (\$/MWh) for 100 MWe Nameplate

	Solar Multiples											
Level 1 Storage (MWh)	0.5	0.75	1	1.25	1.5	1.75	2	2.25	2.5	2.75	3	
1500 (7.5 hrs)	189.8	137.5	104.8	93.4	80.2	73.9	70.0	68.9	71.7	75.0	77.6	Baseline selected
1800 (9 hrs)	193.9	140.3	106.9	95.3	81.8	75.3	70.7	67.9	69.3	71.8	73.8	
2000 (10 hrs)	190.8	137.9	105.0	93.9	81.2	75.2	71.0	67.7	68.3	70.1	71.8	at minimum
2400 (12 hrs)	196.1	141.6	107.6	96.1	83.0	76.7	72.3	68.5	67.9	67.9	68.8	CapEx
2800 (14 hrs)	201.3	145.2	110.1	98.2	84.7	78.2	73.6	69.7	68.7	67.5	67.5	
3200 (16 hrs)	206.6	148.8	112.7	100.4	86.4	79.7	74.9	70.9	69.8	68.1	67.4	
3600 (18 hrs)	211.9	152.4	115.2	102.6	88.1	81.1	76.3	72.0	70.8	69.1	68.0	
4000 (20 hrs)	217.2	156.0	117.8	104.7	89.9	82.6	77.6	73.2	71.9	70.0	68.9	
4400 (22 hrs)	222.5	159.7	120.3	106.9	91.6	84.1	78.9	74.3	72.9	71.0	69.8	
4800 (24 hrs)	227.8	163.3	122.8	109.0	93.3	85.6	80.2	75.5	74.0	72.0	70.7	

SolarPACES 2022

Problem: Develop a system design that generates more than the baseline with guaranteed dispatch

- Dynamic electricity pricing model: every day prices can be modified by solar availability, 365 separate cases _____ possible
- Assumption: At least 6 hours of off-peak (low-cost) electricity is available every day (likely nights) irrespective of weather
- 10 hours of "guaranteed" generation under all conditions every day, targeting the highest price hours
- Assumes a continuous demand for H₂ in the market
- H₂ Price: \$60/MWh (\$2/kg, based on 120 MJ/kg LHV)
- Does not include revenues from sales of O₂ or capacity payments or other

L1, L2, and L3 systems under study

	Case No	L1	SM	L2	RR	L3	eTCH ₂	Weather		
		MWh		MWh	MW	MWh	MW			TMY Daggett CA
		(Hours)		(Hours)		(Hours)				
Only L1	1	2000 (10)	2.25					Normal		Data "modified"
	2	2000 (10)	2.25					Modified		by adding 1 week of low insolation
L1-L2	3	2000 (10)	2.25	2200 (10)	367			Normal		
	4	2000 (10)	2.25	2200 (10)	367			Modified		(avg. 2 hours of
L1-L2-L3	5	2000 (10)	2.25	2200 (10)	200	2400 (10)	300	Normal		sun/per day) to all
	6	2000 (10)	2.25	2200 (10)	200	2400 (10)	300	Modified		months
		1		1		1		L1-to	o-elec	tricity: 50%
Level 1, 2 and 3 with similar storage capacity L2-to-electricity: 45.5%									tricity: 45.5%	
								L3-to	o-elec	tricity: 41.7%

Albuquerque, September 29, 2022

Results: multi-level energy storage L1-L2 system

- Generation went up with addition of
 Level 2 because
 generation gaps in
 low insolation
 periods are filled
- The revenue does
 not compensate the
 higher investment
 cost and operating
 cost of off-peak
 electricity

LCOE 15% more than baseline

SolarPACES 2022

	Annualized	Off-peak	Hydrogen		Annual	Electricity	
Case No	Plant Cost	Electricity Cost	Revenue	LCOE	Generation	Revenue	Net Earnings
	\$M	\$M	\$M	S/MWh	% Capacity	\$M	\$M
1	33.00	0.00		67.83	0.56	48.30	15.30
2	33.00	0.00		79.67	0.47	42.20	9.20
3	36.50	4.22		77.60	0.61	53.90	13.18
4	36.50	8.92		90.40	0.58	55.10	9.68
5	39.90	46.90	56.90	55.91	0.61	53.90	24.00
6	39.90	49.40	54.00	69.10	0.58	55.10	19.80
			Nor	mal solar			

L1-L2 system

Capital expenses distribution

Annualized

ŚΜ

Case No Plant Cost Electricity Cost

Off-peak

ŚΜ

0 00

Annual

Generation

% Capacity

Electricity

Revenue

ŚΜ

10 20

Net Earnings

\$M

1 - 20

Results: multi-level energy storage L1-L2-L3 system

LCOE

S/MWh

c = 0

Hydrogen

Revenue

\$M

- Generation w.r.t. L1-L2 system did not increase significantly because not many additional "profitable" generation hours
- The revenues from the H₂ sell compensates for the higher CapEx and OpEx

LCOE 16% less than baseline

SolarPACES 2022

1	33.00	0.00		67.83	0.56	48.30	15.30
2	33.00	0.00		79.67	0.47	42.20	9.20
3	36.50	4.22		77.60	0.61	53.90	13.18
4	36.50	8.92		90.40	0.58	55.10	9.68
5	39.90	46.90	56.90	55.91	0.61	53.90	24.00
6	39.90	49.40	54.00	69.10	0.58	55.10	19.80
4 2000 1500 1000 500 0	0 1000) 2000	Nor 3000	mal solar 4000	5000 6000) 7000	<u>— L1 — L2</u> 8000 hour
4 4 1500 1500 1000 500 0) 2000	3000	4000	5000 6000	D 7000	E3
Albuc	juerque, Septer	nber 29, 2022	ASU LIGH	TWORKS®	I AI	berto de la Calle	17

Results: multi-level energy storage L1-L2-L3 system

- Generation w.r.t.
 L1-L2 system did
 not increase
 significantly
 because not many
 additional
 "profitable"
 generation hours
- The revenues from
 the H₂ sell
 compensates for
 the higher CapEx
 and OpEx

LCOE 16% less than baseline

SolarPACES 2022

	Annualized	Off-peak	Hydrogen		Annual	Electricity						
Case No	Plant Cost	Electricity Cost	Revenue	LCOE	Generation	Revenue	Net Earnings					
	\$M	\$M	\$M	S/MWh	% Capacity	\$M	\$M					
1	33.00	0.00		67.83	0.56	48.30	15.30					
2	33.00	0.00		79.67	0.47	42.20	9.20					
3	36.50	4.22		77.60	0.61	53.90	13.18					
4	36.50	8.92		90.40	0.58	55.10	9.68					
5	39.90	46.90	56.90	55.91	0.61	53.90	24.00					
6	39.90	49.40	54.00	69.10	0.58	55.10	19.80					
	Modified solar											

Results: multi-level energy storage L1-L2-L3 system

Capital expenses distribution

Summary

- Three receiver configuration with 90-degree difference between each other exhibits the lowest LCOH
- L1-L2 LCOE is 15% above the baseline LCOE, but has a "guaranteed" dispatchable generation
- L1-L2-L3 LCOE is 16% less than baseline LCOE due to H₂ revenue
- To make this system profitable we need low off-peak electricity rates for filling storage or H_2 generation

Thank you for your attention!!

We would like to acknowledge the team and institutions involved in this work

This material is based on work supported by the U.S. Department of Energy Solar Energy Technologies Office under Award No. DE-EE0008991. The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SolarPACES 2022

Albuquerque, September 29, 2022