

## A Low-Pressure Reactor Design for Solar Thermochemical Ammonia Production

Xiang Gao<sup>1</sup>, Ivan Ermanoski<sup>2</sup>, Andrea Ambrosini<sup>3</sup>, Alberto de la Calle<sup>1</sup> and Ellen B. Stechel<sup>4</sup> <sup>1</sup> ASU LightWorks<sup>6</sup>, Arizona State University, PO Box 875402, Tempe, AZ 85287-5402, USA <sup>2</sup> ASU LightWorks<sup>6</sup> and the School of Sustainability, Arizona State University, PO Box 875402, Tempe, AZ 85287-5402, USA <sup>3</sup> Sanda National Laboratories, PO Box 5800, MS 0734, Abuquerque, NM 87185, US <sup>4</sup> ASU LightWorks<sup>6</sup> and the School of Molecular Sciences, Arizona State University, PO Box 876402, Tempe, AZ 85287-5402, USA



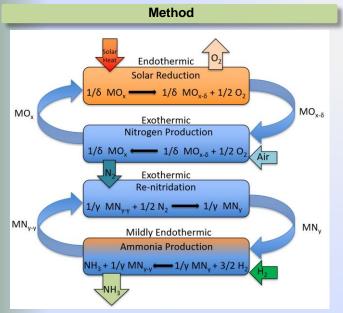
#### Background

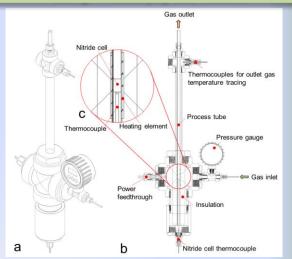
Ammonia ( $NH_3$ ) is one of the most commonly produced industrial chemicals worldwide. Fertilizer for agriculture accounts for about 80% of  $NH_3$  production. Furthermore,  $NH_3$  is in consideration as a hydrogen carrier or as an energy vector in a deeply decarbonized energy system.

# What are the drawbacks of the current Haber-Bosch (H-B) process?

- An energy-demanding conversion from H<sub>2</sub> and N<sub>2</sub> at 150-250 bar;
- The major source of H<sub>2</sub> and N<sub>2</sub>, by reforming and combusting hydrocarbons, is highly carbon-intensive;
- The energy to provide process heat and pressure for NH<sub>3</sub> production also requires combustion of methane.

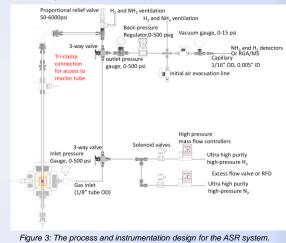
There is a strong incentive to develop a sustainable  $NH_3$  synthesis pathway. For example, using concentrating solar irradiation for process heat and pursuing relatively low-pressure operating conditions will significantly help mitigate greenhouse gas emissions and enable flexible operations at a smaller scale than H-B.





Figure 1: A solar thermochemical looping technology to produce and store  $N_2$  from air for the subsequent production of NH<sub>3</sub> via an advanced two-state process.

#### What is the proposed NH<sub>3</sub> production method?

- Concentrated solar irradiation first drives the reduction of redox-active metal oxide particles; metal oxides are then re-oxidized by air, resulting in nearly O<sub>2</sub>-free N<sub>2</sub> gas; H<sub>2</sub> can be produced from a net carbon-neutral process;
- H<sub>2</sub> reacts with a metal nitride to produce NH<sub>3</sub> and a nitrogen deficient nitride;
- The nitrogen deficient nitride reacts with sustainable N<sub>2</sub> to regenerate the initial nitride.


The target pressure for the NH<sub>3</sub> synthesis looping cycle is an order of magnitude lower than the H-B process.

Т



Design Philosophy and Results

Figure 2: Illustration of the NH<sub>3</sub> synthesis reactor (ASR). (a) Isometric view. (b) Front cutplane view with major components labeled. (c) Heated reaction zone.



### Design of the benchtop NH<sub>3</sub> synthesis test reactor:

- NH<sub>3</sub> synthesis and re-nitridation reactions are achieved in one reactor cyclically by switching between pressurized (up to 30 bar) H<sub>2</sub> and N<sub>2</sub> inlet gas flows;
- The design purposely maximizes the utilization of commercial off-the-shelf components;
- Unnecessary dead volume in the pressurized zone is significantly minimized;
- The reactor volume (< 2L) captures the design features of a scaled-up unit to simulate heat transfer and material reactivity losses during cyclic operations.

The ASR enables cool inlet  $H_2/N_2$  gases that fill an annulus between the "hot-wall" process tube and the "cold-wall" pressure vessel, to decouple the compound risk of high pressure and high temperature.

#### Acknowledgement

We would like to acknowledge the team and institutions involved in this work: Sandia, Georgia Institute of Technology and ASU. This material is based on work supported by the U.S. Department of Energy Solar Energy Technologies Office under Award No. DE-EE0001529. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

ASU LIGHTWORKS®