

Retrofit of Dunhuang 10 MW molten salt plant with a high temperature supercritical CO₂ cycle

From EDF: Yann Le Moullec, Zhang Jinyi, Yang Zijiang, Zhou Pan, Thibaut Neveux, Thomson Mendoza, Jean Florian Brau From Shouhang: Qi Zhipeng, Chen Wenlong, Wang Xihua, Jing Chengtao

Interest SCO₂ cycle for CSP

Increase

Efficiency

For T above 550°C

Flexibility

Reduced start up time

Reduce

Water resource

No more steam

Complexity

Low number of equipment Low number of valve

Equipment Size

Small turboset
Smaller air cooling HX

-10 to -25 % on LCOE

Today's vision on SCO₂ technology roadmap for CSP

Up to 560°C - Quick implementation of SCO₂ cycle

- ✓ Power block reduction
- √ Same efficiency
- ✓ No change of molten salt

Up to 650°C – SCO₂ commercial potential

- ✓ Significant efficiency gain
- ✓ Optimized salt
- ✓ New bladed receiver

Up to 750°C − Long term CSP future of SCO₂ cycle

- ✓ High efficiency gain
- ✓ Use of hallide salt w or w/ intermediate HTF
- ✓ Use optimized bladed receiver
- ✓ Use internally insulated tank
 - ✓ Could also used particles receivers

Scope of present project

Demonstrate cycle technology
Assess equipment supply chain
Prepare commercial project in 3 years

Example of light-trapping bladed receiver Ho, C.K., 2017, Solar Energy

EDF & Shouhang partnership

Companies profiles and interest for SCO₂ cycles

International utilities company

with business on all power generation, transport and commercialization chains

Leader in the low carbon power generation

Strong commitment in innovation and renewable power generation

Chinese leading equipment supplier for energy transition

with business in dry cooling system, CSP, waste heat recovery and multi energy system **Leader in CSP technologies in China** (investor and supplier, Owner of SunCan brand) **Striving to innovate in CSP to maintain its competitive advantage**

Aims of partnership

3 years project

- ✓ Assess the potential of SCO₂ cycles for near future CSP plant
- ✓ Develop a retrofit solution of Shouhang plant
- ✓ Operate and evaluate the performance of the demo cycle

Existing molten salt plant in Dunhuang

Overall plant design

- ✓ Solar field 180 000 m² (1500 Heliostat of 116 m²)
- ✓ Tower receiver (138 m high)
- ✓ Solar salt storage 15 h (5800 t of solar salt)
- ✓ Steam cycle 10 MW
- ✓ Air condenser

Investment of 420 M RMB (≈63 M\$)

70 % equipment supply by Shouhang

In operation since November 2016

Achieve 6 days 24h continuous operation in july 2018

Project key target and schedule

Project key boundary hypothesis

- ✓ No change on molten salt system
- ✓ Installation parallel to steam cycle
- √ 10 MW+ net power
- ✓ 500°C+ temperature
- ✓ Similarities with future SCO₂ cycle for CSP

Demonstration key target

- ✓ Test key equipment (15 MW+ turbine, 20 MW MS heater, 40 MW+ heat recup.)
- ✓ Test recompression loop & intercooled compression
- ✓ Test advanced inventory control system
- ✓ Test up to 620°C operation
- ✓ Test high T molten salt loop with electrical heating

Overall project key milestones

Cycle selection and design – methodology 1/2

Boundary hypothesis

- 1. Flow of 80 kg/s of 560°C molten salt
- 2. Has to cool the molten salt around 290°C
- 3. Provision for lower salt T and higher return T
- 4. Minimal achievable CO₂ temperature : 35°C
- 5. Maximal practical pressure : 250 bar

Site condition

Supplier review

Performance hypothesis at pre-design stage

- 1. Turbine efficiency: 85 %
- 2. Compressor efficiency: 80 %
- 3. Achievable pinch in heat exchanger: 10°C

Supplier review

HX cost optimization

Free parameter

- 1. Cycle architecture
- 2. Maximal CO₂ temperature
- 3. Minimal CO₂ pressure
- 4. CO₂ flowrate

Manual cycle screening Global optimization Engineering review Objective function to maximize

Cycle net power

Salt heat use

X cycle efficiency

Cycle selection and design – methodology 2/2

Optimization driven design with 2 approaches

- 1. « classic design » by simulation based on expertise learn and understood the design drivers
- 2. global optimization tool based on MINLP optimizer coupled with a cycle superstructure sure to not miss a good solution and explore out of the box ideas

The two reference SCO₂ cycles

	efficiency	power
Tmax	550°C	495°C
Pmin	80 bar	85 bar
η	35.9 %	33.3 %
Exit salt T	344°C	290°C
Power	9.9 MW	11.4 MW
Rel. cost	1	0.76

max.

max.

Tmax	550°C	420°C
Pmin	85 bar	90 bar
η	41.1 %	33.2 %
Exit salt T	401°C	290°C
Power	8.7 MW	11.4 MW
Rel. cost	1.28	0.97

Interest of compression intercooling

Tmax	495°C -	→	535°C
Pmin	85 bar	\rightarrow	65 bar
η	33.3 %	>	34.7 %
Exit salt T	290°C		
Power	11.4 MW ·	\rightarrow	11.9 MW

No further significant amelioration

Tmax	420°C -	→ 430°C
Pmin	90 bar -	→ 85 bar
η	33.2 %	34.7 %
Exit salt T	290°C	
Power	11.4 MW -	→ 11.9 MW

Evaluation of CO₂ preheat scheme

Benchmark with partial cooling cycle

485°C
85 bar
36.7 %
290°C
12.6 MW

Higher efficiency
Simpler part load control

40 % UA increase on recuperator

Power block cost : < 3 % increase

Tmax	515°C
Pmin	75 bar
η	36.1 %
Exit salt T	290°C
Power	12.4 MW

Higher compressor efficiency

Lower efficiency
30 % UA increase for salt heater
12 % PR increase for compressor

Benchmark with dual temperature cycle

Tmax	485°C
Pmin	85 bar
η	36.7 %
Exit salt T	290°C
Power	12.6 MW

Tmax	550 / 410°C
Pmin	85 bar
η	38.4 %
Exit salt T	290°C
Power	13.2 MW

Higher efficiency
LT turbine could drive all comp.

15 % UA increase on recuperators 90 % UA increase on heaters 2 turbines (13 & 6.5 MW) More complex layout Mixing for salt freezing protect.?

Selection of studied cycles – final remarks

Final layout considered: intercooled recompression cycle

Cycle selection: heat exchanger detailed specification

Recuperator temperature approach selection

Techno-economical choice based on Levelized cost of generating heat of 20 to 25 \$/MWh

10°C appears reasonable

Preheater salt freezing protection

Flexible protective measure

Mixing of hot warm CO₂ in cold warm CO₂ Increase by 500 % preheater UA

Supplier review: first lesson learned

More than 25 suppliers consulted for turbine, compressor and heat recuperator

From China, Japan, Korea, US, UK, Germany, Switzerland & France Good reception of the request for proposal and constructive/commercial answer

✓ Turbine

- No key issue to design and manufacture but no firm performance guarantee
- Efficiency above 85 % is foreseen
- Radial and Axial design still co-exist at 18 MW

✓ Compressor

- No issue linked to transcritical compression
- Compressor inlet around critical pressure make design dificult (especially combined with high PR)
- Performance guarantee around 80 % for compressors
- Radial design

✓ Heat recuperator

- Almost all suppliers goes for PCHE technology
- No design issue and performance guaranteed

All key equipment can be readily manufactured with obviously some lack of references

Control design and operability

To test control option and detailled design option

Control design based on a fully physical dynamic model of the plant

Part-load control by inventory control with min P protection

Dynamic model developed in Dymola

For more information, see the poster :

Preliminary site implementation proposal

HT salt loop

Cooling system

CO₂ storage

Power block & auxiliaries

Conclusion...for now

Retrofit of 10 MW Shouhang CSP plant in Dunhuang is on the way

- Demonstrator cycle and layout selected
- Supplier reviewed (preselection soon)
- Shaft design and balance of plant before nov.
- Formal feasibility study report by Chinese Design Institute (late 2018)
- Investment decision (early 2019)

For SCO₂ cycle technologies

- Suppliers ready to start real project
- No technical showstopper for design
- Need to dive into control and operation aspect
- Good potential even at medium T Foresee 45% cycle efficiency for commercial at 550°C

