Abstract:
The objective of this research is to investigate the implementation of two concentrated solar power (CSP) technologies in the 28 devoted locations in Egypt, in order to select the optimum site-specific CSP technology. This may be achieved by a validated thermo-economic simulation of power plants using the Sam advisory model and an investigation of the two proposed CSP technologies’ configurations to fulfill the power plant’s thermal demand. Simulations take into consideration the environmental, technical, financial, and economic aspects of the projects. Among many simulated parameters, three are considered to compare the two proposed technologies’ configurations in the 28 locations utilizing geographic information system aid. Those parameters are the annual power production, the levelized cost of energy, and water consumption. A comparative analysis indicated that the solar tower requires 25% more land than the parabolic trough. The additional collecting area raised the net capital cost of the solar tower system by 15% over the parabolic trough model. As a result, the solar tower arrangement reduces the levelized cost of energy while increasing the yearly power generated and water required by the power plant. Simulation results favored the proposed solar tower configuration over the parabolic trough and recommended the implementation of such concentrated solar power projects in the central and eastern locations of Egypt
Bayoumi, S., Moharram, N.A., Shehata, A.I. et al. A multi-criteria performance assessment of concentrated solar power plants for site and technology selection in Egypt. Int. J. Environ. Sci. Technol. (2023). https://doi.org/10.1007/s13762-023-05114-1
Published in full at the International Journal of Environmental Science and Technology